CSE 311: Foundations of Computing

Lecture 12: Modular Exponentiation, Set Theory

1/8/82

“l asked you a question, buddy. ... What’s
the square root of 5,248?”

Last class: Euclid’s Algorithm for GCD

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(a, 0) = a.
you get gcd(a, 0) (haeke ort

Equations with recursive calls: vitle©

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30) g
= gcd(30, 126 mod 30) = gcd(30, 6) Mﬁ—
= gcd(6, 30 mod 6) = gcd(6, 0) fow
=6

Tableau form (which is much easier to work with and will be more useful):

Bf(T= 5%126 +30 Each line computes both

126=4* 30+ @ quotient and remainder of the
30=5*% 6+ 0 shifted numbers

Last class: Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Example: a = 35, b = 27
Compute gcd (35, 27):

-

35=1%27+8 8 =35-1%*27
27=3%8 +3 3=27-3*8
8=2%3 +2 2=8 -2*3
3=1*2 +1) D=3 - 1*2

2=2*1 +0

Last class: Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Example: a = 35, b = 27 1=

Use equations to substitute
back

(
=({1)*8+3% 27+ (-9)*8

= 3%27 + (- 0)*&
Optional Check:

(-10) * 35 = -350 = 3127 +(-10)*35+10*27
13*27 = 351 = (-10)*35 + 13*27

Last class: Multiplicative inverse (mod m)

7
6

4

2
1

4

0 |5

8

2

1

2

9 |6 |3

1 (mod m).

>

Let 0 < a,b < m. Then, b is the multiplicative
inverse of a (modulo m) iff ab

6 (7 |8 |9

6 |7 |8 |9

8

0 |5

2

5

5

5

4

2

6 |0 (4 |8 |2

0 |5

8

3 14 |5

3

8 |4 |0 |6

1

2

2

1

0

oj0 |0 (O |O0O |0 (O |O|O O |O

210 (2 |4 |6 (8|02 (4|6 |8

310 |3 (6|9
4 10 |4 (8 |2
510 |5 |0 |5

6 10 |6

7 10 |7 |4

810 |8 (6 |4 |2 |0 |8 |6 |4

910 |9 (8 |7 |6 (5|4 |3

« o [12)s |4 |5 |6

3

mod 7

mod 10

Last class: Multiplicative inverse (mod m)

Let 0 < a,b < m. Then, b is the multiplicative

inverse of a (modulo m) iff ab = 1 (mod m).
0|1(2(3|4|5|6|7|8]|9

This can’t exist if a and m have LI—
oo |o|o]o]o|o]|o|olo]|o

a common factor >1.
1fo 1123|4567 |8 |9
L2 J0 |2 1416 8]0 |& [4mlb|8]

Idea: b is like a~! (mod m) 3J0]3 1619258 |14 |7

so multiplying by b is 41014 18 |2 |6 10418216

equivalent to dividing by a. S 1912 [%a]3 Q] 0.]50. 15 L
L]0 6 &8 |%£]9 (848 |4
7lo|7 |4 |1|8|5]|2|9 |6 |3
slo|s|6|a|2]|0]|8 |6 |42
9lo|9 |8 |7 |6 |54 |3 |21

mod 10

Finding multiplicative inverse mod m

Suppose that gcd(a,m) = 1.
—
Using Extended Euclidean Algorithm

find integers s and t such that sa + tm = 1.

e . B

Therefore sa = 1 (mod m).

Y 4w

The multiplicative inverse_b_ of a modulo m must also

satisfy 0 < b < m so we set b = s mod m.
C— s

It works since ba = sa = 1 (mod m)

—
-

Example

Solve: 7x = 1 (mod 26)
¢

Example

Solve: 7x = 1 (mod 26)

First compute and check that gcd(26,7) = 1

26=3%x7 4+ 5
7 = 1x5 4+ 2
5 =2%x2 4+ 1
2 =2%x1+4+0

Example

Solve: 7x = 1 (mod 26)

Then rewrite equations in form for substitution

26=3%7 + 5 5=26-3%7
7 = 1%5 + 2 2="7-1%5

T
5 =2%x2+ 1 1=5- 2%2

2 =21+ 0

Example

Solve: 7x = 1 (mod 26)

Apply substitutions from bottom to top.

26 =37 + 5 5=26-3x7
7 =15+ 2 2=7-1%5
5 =22+ 1 1=5- 2%2
2 =2x14+0
1725 - 2x2
= 5 - 2x(7-1%5)

(-2)x7 + 3%
(-2)*7 4+ 3%(26-3%7)
= (=11)*7 + 326

——

—\

Example

Solve: 7x =1 (mod 26)

Read off coefficient and reduce modulo 26.

26=3*7 + 5 5=26-3%7
7 =1*5+ 2 2=7-1%5
5 =22+ 1 1=5- 2x%2
2 =21 +0
1 =5 - 2%2
= 5 - 2% (7-1%5)

(-2)x7 + 3%5
(-2)*7 4+ 3%x(26-3%7)
= (—=11)*7 + 326

Multiplicative inverse of 7 modulo 26

Now (—11) mod 26 = So, x = 15 + 26k for integer k.

g

Example of a more general equation ?_ e

Now solve: 7y = 3 (mod 26) ¢

&=

[We already computed that @s the multiplicative inverse

of 7 modulo 26. Thatis, 715 =1 (mod 26)
ey, —

If v is a solution, then multiplying by 15 we have

(15 -27 .y 5@3 (mod 26) ég
‘ A

\— Substituting 15 - 7 = 1 (mod 26) on the left gives i/:
y=1-y=15-3 =19 (mod 26)

-~ o

This shows that every solution y is congruent to 19.

Example of a more general equation

Now solve:7y = 3 (mod 26)

Multiplying both sides of y = 19 (mod 26) by 7 gives
e v
7y =719 = 3 (mod 26)
So,any ¥ = 19 (mod 26) is a solution.

Thus, the set of numbers of the form y = 19 + 26k,
. . M
for any integer k, are exactly solutions of this equation.

gcd(a,m) =1ifmisprimeand 0 < a <m so
can always solve these equations mod a prime.

Math mod a prime is especially nice

mod 7

Hashing

Scenario:

Map a small number of data values from a large
domain {0,1, ..., M — 1} ...

...into a small set of locations {0,1,...,n — 1} so
one can quickly check if some value is present

* hash(x) = (ax + b) mod p for p a prime close to n
— Relies on gcd(a,p) = 1 to avoid many collisions

 Depends on all of the bits of the data
— helps avoid collisions due to similar values
— need to manage them if they occur

Hashing

* hash(x) = (ax + b) mod p for p a prime close to n

* Applications
— map integer to location in array (hash tables)

— map user ID or IP address to machine
requests from the same user / IP address go to the same machine
requests from different users / IP addresses spread randomly

Attack on RSA security with GCD

* RSA public key includes m that is the product
of two large randomly chosen primes p, q

— Everyone can see all the public keys (miIITon;)
— Security depends on keeping p and g secret
— OK since factoring m seems very hard

* In 2012 a new attack using GCD broke a
huge number of RSA public keys!

— Weak keys: Algorithms/devices cut corners:
Skimped on random bits or size of primes

Attack on RSA security with GCD

Weak keys: few random bits

— Few enough that some public keys m,; and m,
happen to share just one of their two factors:

m, = pq and m, = pr

— Then can break both since p = gcd(m, m,)
o

2012: 11 million RSA keys, 23,500 broken
2016: 1024-bit RSA keys available from Internet
— 26 million keys, 63,500 broken
2019: 750 million RSA keys, 250,000 broken
— loT (Internet of Things) devices often the culprit

RSA Relies on Modular Exponentiation

a6

a5

a4

a3

a2

al

mod 7

Modular Exponentiation: (Essential for RSA)

—
R e J = S Y1413 i
. \44 . /“— X

 Compute 783653143 mod 104729

P S

 Output is small
— need to keep intermediate results small

(= my Y wl’%
Small Multiplications [[M“‘MCJQ OU""A(’

By the multiplicative property modwo m, if you want to compute
ab mod m then you can do the fotlowing:

1/Reduce a and b modulo ogeta mod m and b mod m

‘
2. Multlply to produce ¢ = {a mod m) (b mod m)

Output ¢ mod m
.

Claim: c mod m = ab m dm/ Z

Proof: Just need to show that ¢ = ab (mod m).

a mod m) = a (mod m) <&—
™ =

(b mod m) = b (mod m)

and the multiplicative property since c is the product of the
left sides and ab is the product of the right sides. B

That follows fro

Repeated Squaring - small and fast

Then we have ab mod m = ((a mod m)(b mod m)) mod m

—— ISR — —
So cfmodm = (amod m)? mod m 3
and a*modm = (a2 mod m)* mod m 2
and a8 mod m = (a*mod m)? mod m P
and al® mod m = (a8 mod m)? mod m N
and a3; m&qd m = (a'® mod m)? mod m 1}
v

Can compute a* mod m for k = .Z.l in only_i_steps
What if k is not a power of 2?

Fast Exponentiation Algorithm R

8145§1 in binary is 10011101000101101
81{1g3 =210 4 213 4+ 212 4 D11 4 29 1 25 4 28 4 22 4 20

581453 _ 52104213,4212,211,29,25,23,22,20
16 13 12 11 9 5 3 2 0
= g2'°. g21% . g2 5211 529 420 2% 522 2

281453 mod m= (- a2 . a2'?. a2" . a2 . g2°. 32° . 52% . 32% mod m
= (...(((((a%" mod m -
a213 mod m) mod m - Uses onIy 16+8 =24
3.212 mod m) mod m - muItipIiEz?tions
a2" mod m) mod m - — 1o
29 J v,
a m%dm)modm- A ™M
a2” mod m) mod m - - o)
3 (O -\ P
a2 mod m) mod m - - 2’5*2\
a?" mod m) mod m - N 7
a2” mod m) mod m a Ia“ a
The fast exponentiation algorithm computes ’t&_ﬁ

a mod m using < 2log k multiplications mod m

Fast Exponentiation: a¥ mod m for all k

Another way....

. . 2
a“modm = (a’ mod m) mod m

S

a?!modm = ((a mod m) - (a? mod m)) mod m

Recursive Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 9) {
return 1;

S
} else if ((k%.2) == @) { Q J
long temp = FastModExp(a,MZ,modulus);

return (temp * temp) % modulus;
gmm— L 4

} else { ’

long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

} [

a’’modm = (aj mod m)zmod m
a?+1 ((a mod m) - (a% mod m)) mod m

mod m

Using Fast Modular Exponentiation

* Your e-commerce web transactions use SSL (Secure
Socket Layer) based on RSA encryption

« RSA

— Vendor chooses random 1024-bit or 2048-bit primes p, q_
. P
and 1024/2048-bit exponent e. Computesm =p - q

— Vendor broadcasts (m, e)

— To send a to vendor, you compute C = a® mod m using
menﬁaﬁ@nd send C to the vendor.
— Usi g the vendor computes d that is the
mof emod (p~1)(q — 1)._

— Vendo tes C? mod m usingfast modular

— Fact: a = C?modmfor0 < a < munless p|aor q|a

Sets

Sets

Sets are collections of objects called elements.

L

I

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

—

Some simple examples
A={1}

B={1, 3, 2}

c={1,1} €~
D={{17}, 17} <—

E = {ﬁ 7, cat, dog, I, a}

A)

o N

Some Common Sets

/*N is the set of Natural Numbers; N={0, 1, 2, ...}

Zis the set of Integers; Z ={...,,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48

Ris the set of Real Numbers; e.g. 1, -17, 32/48, t,\/2
_——[n] is the set{1, 2, ..., n} when n'is a natural number %20
& = {}is the empty set; the only set with no elements

-
4 2ahler
X z

,\N\»w*

Sets can be elements of other sets

For example
A = {{1},{2},{1,2},}
6= 12

Then B € A.

Definitions

A and B are equal if tr‘?y have the same elements

A=B := Vx(xe A< xe B)

* Ais asubset of B if every element of A is also in B

AcCB := Vx(x\e/A%xe B)

 Notes: — —
(A=B) = (ASB) A(BSA)

A%BmeansBEA

‘{‘“Qd;"‘\'u} ACBmeans AS BbutA#B
T

Definition: Equality

A and B are equal if they have the same elements

A=B := Vx(xe A< xe B)

A=11,2, 3}
B=13, 4, 5}

C = {3, 4}
@ D=14,3, 3] Which sets are equal to each other?
E = {31 4/ 3}

F =14, 3}}

Definition: Subset

A is a subset of B if every element of A is also in B

AcB = Vx(xe A— xe B)

/———\

A=1{1,2, 3} [+
B=1{3, 4,5}
C=1{3, 4}

QUESTIONS
& C A? /

AcB? X
CcB? \/

Definition: Subset

A is a subset of B if every element of A is also in B

AcB = Vx(xe A— xe B)

Note the domain restriction.

We will use a shorthand restriction to a set

VxeA, P(x) := Vx(xe A — P(x))
—— e -

Restricting all quantified variables improves clarity

