
CSE 311: Foundations of Computing

Lecture 12:  Modular Exponentiation, Set Theory



gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

Last class: Euclid’s Algorithm for GCD

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑎, 0) = 𝑎.

660 = 5 * 126 + 30
126 = 4 *   30 +   6
30 = 5 *     6 +   0

Tableau form (which is much easier to work with and will be more useful):

Equations with recursive calls:

Each line computes both 
quotient and remainder of the 
shifted numbers



Last class: Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

35	=	1	*	27	+	8
27	=	3	*	8			+	3
8	=	2	*	3			+	2
3	=	1	*	2				+	1
2	=	2	*	1				+	0

8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2

Example: 𝑎 = 35, 𝑏 = 27

Compute gcd(35,	27):	



Last class: Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

1	=		3		– 1	*	2
=		3	– 1	*	(8	– 2	*	3)
=			3	– 8	+	2	*	3
=	(–1)	*	8	+	3	*	3

=	(–1)	*	8	+	3	*	(27	– 3	*	8)
=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
=			3	*	27		+	(–10)	*	8

=			3	*	27		+	(–10)	*	(35	– 1	*	27)
=			3	*	27			+	(–10)	*	35	+	10	*	27
=			(–10)	*	35		+		13	*	27

8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2

Example: 𝑎 = 35, 𝑏 = 27

Optional Check:
(–10)	*	35	=	–350	
13	*	27		=			351

Use equations to substitute
back



Let 0 ≤ 𝑎, 𝑏 < 𝑚. Then, 𝑏 is the multiplicative 
inverse of 𝑎 (modulo 𝑚)  iff 𝑎𝑏 ≡ 1 (mod 𝑚).   

Last class:  Multiplicative inverse (mod 𝑚)

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10



Let 0 ≤ 𝑎, 𝑏 < 𝑚. Then, 𝑏 is the multiplicative 
inverse of 𝑎 (modulo 𝑚)  iff 𝑎𝑏 ≡ 1 (mod 𝑚).   

Last class:  Multiplicative inverse (mod 𝑚)

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10

This can’t exist if 𝑎 and 𝑚 have
a common factor >1.

Idea: 𝑏 is like  𝑎!" (mod 𝑚)
so multiplying by 𝑏 is 
equivalent to dividing by 𝑎. 



Finding multiplicative inverse mod 𝑚

Suppose that gcd 𝑎,𝑚 = 1.

Using Extended Euclidean Algorithm
find integers 𝑠 and 𝑡 such that 𝑠𝑎 + 𝑡𝑚 = 1.

Therefore 𝑠𝑎 ≡ 1 (mod 𝑚).

The multiplicative inverse 𝑏 of 𝑎 modulo 𝑚 must also 
satisfy 0 ≤ 𝑏 < 𝑚 so we set 𝑏 = 𝑠 mod 𝑚.

It works since 𝑏𝑎 ≡ 𝑠𝑎 ≡ 1 (mod 𝑚)



Example

Solve:  7𝑥 ≡ 1 (mod 26)



Example

Solve:  7𝑥 ≡ 1 (mod 26)

First compute and check that gcd(26, 7) = 1

26 = 3 ∗ 7 + 5 5 = 26 – 3 ∗ 7
7 = 1 ∗ 5 + 2 2 = 7 – 1 ∗ 5
5 = 2 ∗ 2 + 1 1 = 5 – 2 ∗ 2
2 = 2 ∗ 1 + 0



Example

Solve:  7𝑥 ≡ 1 (mod 26)

Then rewrite equations in form for substitution

26 = 3 ∗ 7 + 5 5 = 26 – 3 ∗ 7
7 = 1 ∗ 5 + 2 2 = 7 – 1 ∗ 5
5 = 2 ∗ 2 + 1 1 = 5 – 2 ∗ 2
2 = 2 ∗ 1 + 0



Example

Solve:  7𝑥 ≡ 1 (mod 26)

Apply substitutions from bottom to top.

26 = 3 ∗ 7 + 5 5 = 26 – 3 ∗ 7
7 = 1 ∗ 5 + 2 2 = 7 – 1 ∗ 5
5 = 2 ∗ 2 + 1 1 = 5 – 2 ∗ 2
2 = 2 ∗ 1 + 0

1 = 5 – 2 ∗ 2
= 5 – 2 ∗ (7 – 1 ∗ 5)
= (– 2) ∗ 7 + 3 ∗ 5
= –2 ∗ 7 + 3 ∗ (26 – 3 ∗ 7)
= −11 ∗ 7 + 3 ∗ 26



Example

Solve:  7𝑥 ≡ 1 (mod 26)

Read off coefficient and reduce modulo 26.

26 = 3 ∗ 7 + 5 5 = 26 – 3 ∗ 7
7 = 1 ∗ 5 + 2 2 = 7 – 1 ∗ 5
5 = 2 ∗ 2 + 1 1 = 5 – 2 ∗ 2
2 = 2 ∗ 1 + 0

1 = 5 – 2 ∗ 2
= 5 – 2 ∗ (7 – 1 ∗ 5)
= (– 2) ∗ 7 + 3 ∗ 5
= –2 ∗ 7 + 3 ∗ (26 – 3 ∗ 7)
= −11 ∗ 7 + 3 ∗ 26

Now (−11) mod 26 = 15.   So, 𝑥 = 15 + 26𝑘 for integer 𝑘.
Multiplicative inverse of 7 modulo 26



Example of a more general equation

Now solve:  7𝑦 ≡ 3 (mod 26)

We already computed that 15 is the multiplicative inverse 
of 7 modulo 26. That is,  7 : 15 ≡ 1 (mod 26)

If 𝑦 is a solution, then multiplying by 15 we have
15 : 7 : 𝑦 ≡ 15 : 3 (mod 26)

Substituting 15 : 7 ≡ 1 (mod 26) on the left gives
𝑦 = 1 : 𝑦 ≡ 15 : 3 ≡ 19 (mod 26)

This shows that every solution 𝑦 is congruent to 19.



Example of a more general equation

Now solve:7𝑦 ≡ 3 (mod 26)

Multiplying both sides of 𝑦 ≡ 19 (mod 26) by 7 gives
7𝑦 ≡ 7 : 19 ≡ 3 (mod 26)

So, any 𝑦 ≡ 19 (mod 26) is a solution. 

Thus, the set of numbers of the form 𝑦 = 19 + 26𝑘, 
for any integer 𝑘, are exactly solutions of this equation.



Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

gcd(𝑎,𝑚) = 1 if 𝑚 is prime and 0 < 𝑎 < 𝑚 so 
can always solve these equations mod a prime.

mod 7

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1



Attack on RSA security with GCD

• RSA public key includes 𝒎 that is the product 
of two large randomly chosen primes 𝒑, 𝒒
– Everyone can see all the public keys (millions)
– Security depends on keeping 𝒑 and 𝒒 secret
– OK since factoring 𝒎 seems very hard

• In 2012 a new attack using GCD broke a 
huge number of RSA public keys!
–Weak keys: Algorithms/devices cut corners:

Skimped on random bits or size of primes



Attack on RSA security with GCD

Weak keys:  few random bits
– Few enough that some public keys 𝒎𝟏 and 𝒎𝟐

happen to share just one of their two factors:
𝒎𝟏 = 𝒑𝒒 and  𝒎𝟐 = 𝒑𝒓

– Then can break both since 𝒑 = gcd(𝒎𝟏,𝒎𝟐)

2012:  11 million RSA keys, 23,500 broken
2016:  1024-bit RSA keys available from Internet

– 26 million keys, 63,500 broken
2019:  750 million RSA keys, 250,000 broken

– IoT (Internet of Things) devices often the culprit



RSA Relies on Modular Exponentiation

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1

mod 7



Modular Exponentiation:  (Essential for RSA)

• Compute 7836580429

• Compute 7836580429 mod 104729

• Output is small
– need to keep intermediate results small



By the multiplicative property modulo 𝒎, if you want to compute 
𝒂𝒃 mod𝒎 then you can do the following:

1. Reduce 𝒂 and 𝒃 modulo 𝒎 to get 𝒂mod𝒎 and 𝒃 mod𝒎
2. Multiply to produce 𝒄 = (𝒂 mod𝒎) 𝒃 mod𝒎
3. Output 𝒄 mod𝒎

Claim: 𝒄 mod𝒎 = 𝒂𝒃mod𝒎
Proof:  Just need to show that 𝒄 ≡ 𝒂𝒃 (mod𝒎).

That follows from  (𝒂 mod𝒎) ≡ 𝒂 (mod𝒎)
(𝒃 mod𝒎) ≡ 𝒃 (mod𝒎)

and the multiplicative property since 𝒄 is the product of the   
left sides and 𝒂𝒃 is the product of the right sides.

𝑎 = 𝑞𝑚 + 𝑟

Small Multiplications



Repeated Squaring – small and fast

Then we have 𝒂𝒃 mod𝒎 = 𝒂mod𝒎 𝒃mod𝒎 mod𝒎

So            𝒂𝟐mod𝒎 = 𝒂mod𝒎 𝟐mod𝒎
and          𝒂𝟒mod𝒎 = 𝒂𝟐mod𝒎 𝟐mod𝒎
and          𝒂𝟖mod𝒎 = 𝒂𝟒mod𝒎 𝟐mod𝒎
and          𝒂𝟏𝟔mod𝒎 = 𝒂𝟖mod𝒎 𝟐mod𝒎
and          𝒂𝟑𝟐mod𝒎 = 𝒂𝟏𝟔mod𝒎 𝟐mod𝒎

Can compute 𝒂𝒌mod𝒎 for 𝒌 = 𝟐𝒊 in only 𝒊 steps
What if 𝒌 is not a power of 𝟐?



Fast Modular Exponentiation

Simple Example:   
To compute 𝒂𝟏𝟎mod𝒎:
Compute  𝒂𝟐mod𝒎 = 𝒂mod𝒎 𝟐mod𝒎

𝒂𝟒mod𝒎 = 𝒂𝟐mod𝒎 𝟐mod𝒎
𝒂𝟖mod𝒎 = 𝒂𝟒mod𝒎 𝟐mod𝒎

Then  𝒂𝟏𝟎mod𝒎 = ( 𝒂𝟖mod𝒎 𝒂𝟐mod𝒎 ) mod𝒎

Also 𝒂𝟏𝟏mod𝒎 = 𝒂𝟏𝟎mod𝒎 𝒂mod𝒎 mod𝒎



Fast Exponentiation Algorithm 
80429 in binary is 10011101000101101
80429 = 216 + 213 + 212 + 211 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 
𝑎& mod 𝑚 using ≤ 2log 𝑘 multiplications mod 𝑚

a80429 = a216+213+212+211+29+25+23+22+20

= a216 · a213 · a212 · a211 · a29 · a25 · a23 · a22 · a20

a80429 mod m= (a216 · a213 · a212 · a211 · a29 · a25 · a23 · a22 · a20) mod m   
= (…(((((a216 mod m ·

a213 mod m ) mod m · 
a212 mod m) mod m · 

a211 mod m) mod m · 
a29 mod m) mod m · 

a25 mod m) mod m · 
a23 mod m) mod m · 

a22 mod m) mod m · 
a20 mod m)  mod m 

Uses only 16 + 8 = 24 
multiplications



Fast Exponentiation:  𝒂𝒌mod𝒎 for all 𝒌

𝒂𝟐𝒋mod𝒎 = 𝒂𝒋 mod𝒎 𝟐mod𝒎

𝒂𝟐𝒋#𝟏mod 𝑚 = (𝒂 mod𝒎) 5 𝒂𝟐𝒋mod𝒎 mod𝒎

Another way....



Recursive Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

}
}

𝒂𝟐𝒋mod𝒎 = 𝒂𝒋 mod𝒎 𝟐mod𝒎
𝒂𝟐𝒋#𝟏mod𝒎 = (𝒂 mod𝒎) 5 𝒂𝟐𝒋mod𝒎 mod𝒎



Using Fast Modular Exponentiation

• Your e-commerce web transactions use SSL (Secure 
Socket Layer) based on RSA encryption

• RSA
– Vendor chooses random 1024-bit or 2048-bit primes 𝒑, 𝒒

and 1024/2048-bit exponent 𝒆.  Computes 𝒎 = 𝒑 ⋅ 𝒒
– Vendor broadcasts (𝒎, 𝒆)
– To send 𝒂 to vendor, you compute 𝑪 = 𝒂𝒆mod𝒎 using 

fast modular exponentiation and send 𝑪 to the vendor.
– Using secret 𝒑, 𝒒 the vendor computes 𝒅 that is the 

multiplicative inverse of 𝒆 mod (𝒑 − 𝟏)(𝒒 − 𝟏).
– Vendor computes 𝑪𝒅mod𝒎 using fast modular 

exponentiation.
– Fact:   𝒂 = 𝑪𝒅mod𝒎 for 𝟎 < 𝒂 < 𝒎 unless 𝒑|𝒂 or 𝒒|𝒂

…as of 2023



Sets



Sets

Sets are collections of objects called elements. 

Write a ∈	B to say that a is an element of set B,
and a ∉	B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, Æ, α}



Some Common Sets

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}
ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}
ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48
ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a natural number
Æ = {} is the empty set; the only set with no elements



Sets can be elements of other sets

For example
A = {{1},{2},{1,2},Æ}
B = {1,2}

Then B ∈	A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Notes:

A Í B  :=  " x (x Î A ® x Î B)

A ⊇ B means B ⊆ A

A ⊂ B means A ⊆ B but A ≠ B

A = B  :=	 " x (x Î A « x Î B)



Definition: Equality

A and B are equal if they have the same elements

A = B  :=	 " x (x Î A « x Î B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}
D = {4, 3, 3}
E = {3, 4, 3}
F = {4, {3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}

QUESTIONS
ÆÍ A?
A Í B?
C Í B?

A Í B  :=  " x (x Î A ® x Î B)



Definition: Subset

A is a subset of B if every element of A is also in B

"xÎA, P(x)  := "x (x Î A ® P(x))

Note the domain restriction.

We will use a shorthand restriction to a set

A Í B  :=  " x (x Î A ® x Î B)

Restricting all quantified variables improves clarity



Sets & Logic



Every set S defines a predicate “x ∈ S”.

We can also define a set from a predicate P:

S = the set of all x (in some universe U) for   
which P(x) is true

In other words...  𝑥 ∈ 𝑆 ↔ 𝑃(𝑥)

Building Sets from Predicates

S  :=  {x : P(x)}



This is a predicate:

Suppose we want to prove A ⊆ B.

Proofs About Sets

A ⊆ B  :=  "x (x Î A ® x Î B)

A  :=  {x : P(x)} B  :=  {x : Q(x)}

Typically: use direct proof of the implication



Prove that 𝐴 ⊆ 𝐵

Proof: Let 𝑥 be an arbitrary object (in the universe).
Suppose that 𝑥 ∈ 𝐴. By definition, this means 𝑃(𝑥).
…
Thus, we have 𝑄(𝑥). By definition, this means 𝑥 ∈ 𝐵.
Since 𝑥 was arbitrary, we have shown, by definition, 
that 𝐴 ⊆ 𝐵.

Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

A ⊆ B  :=  "x (x Î A ® x Î B)

for P(x):= “x>2” and Q(x):=“x2>3”

Therefore 𝑥 > 2 so 𝑥/ > 4 which implies 𝑥2 > 3.


