CSE 311.: Foundations of Computing

Lecture 12: Modular Exponentiation, Set Theory

1/8/82

“| asked you a question, buddy. ... What’s
the square root of 5,248?”

Last class: Euclid’s Algorithm for GCD

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(a,0) = a.

Equations with recursive calls:

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
=gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6

Tableau form (which is much easier to work with and will be more useful):

660=5* 126 + 30 Each line computes both

126=4*_ 30+ @ quotient and remainder of the
30=5* 6+ 0 shifted numbers

Last class: Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb

Example: a = 35, b = 27
Compute gcd (35, 27):

35=1%*27+8 8=35-1%*27
27=3%8 +3 3=27-3*8
8=2%3 +2 2=8 -2%*3
3=1*2 +Q) D=3 -1*2

2=2*1 +0

Last class: Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

T

Example: a = 35, b = 27 1=

Use equations to substitute
back

8=35-1%*27
3=27-3*8 = (-
2=8 -2%*3 =
1=3-1*2 =

Optional Check:
(-10) * 35 =-350
13*27 = 351

(-10) *35 + 13 *27

Last class: Multiplicative inverse (mod m)

Let 0 < a, b < m. Then, b is the multiplicative

1 (mod m).

inverse of a (modulo m) iff ab

ool NO|NDN|IF |||
Vo[l |T|N|O|0|O|| N
NlolN|S | H|[O|n| N[O | ™
OlolVo|lN||TF|O|O|[N|[O0| <
njoln|oln|fojln|o|ln|o|wm
g JOo| |0 N|]O|O|F|0|]| O
mjo|lmnm|V|loa|N|N|O|=H ||~
N]Jolan|d|lO|w|O|N|[|WO]| ®
S JO|w | N[|H|O[N|[O]|OD
ojJo|lo|o|lo|o|o|o|o|o| o
Xjo|lH| N[| D]|O|N|[O| OO
olo M| N
n | o O | < |~
Sl =) ~N|O|m:n
m]o N | = | < ~
©
~N|] O || m
- | o < | in | O
oo o|o| o
<l o < || O

mod 10

Last class: Multiplicative inverse (mod m)

Let 0 < a, b < m. Then, b is the multiplicative
inverse of a (modulo m) iff ab = 1 (mod m).

. , o x|lo |1 (2134|567 |89
This can’t exist if a and m have
olo|o|ol|lo|o|o|o |0 |O|O
a common factor >1.
1lo|1|21|3|4|5|6|7|8]9
2lo |24 |6 |8 |02 |4 |6 |8
Idea: b is like a~! (mod m) 3l0|3|6[9 (2|58 |1 |4 |7
so multiplying by b is 410 |4 |8 |2 |6 |0 |4 8|2 |6
equivalent to dividing by a. 51015]0]5]0]5]05]0 |5
6lole (2|8 (4|06 |28 |4
710|714 |18 |52 |9 |6 |3
slo|s |6 |a|2|0|8 |6 |4 |2
9lo|9 |8 |7 1|6 |54 |3]2 |1

mod 10

Finding multiplicative inverse mod m

Suppose that gcd(a,m) = 1.

Using Extended Euclidean Algorithm
find integers s and t such that sa + tm = 1.

Therefore sa = 1 (mod m).

The multiplicative inverse b of a modulo m must also
satisfy 0 < b < m so we set b = s mod m.

It works since ba = sa = 1 (mod m)

Example

Solve: 7x = 1 (mod 26)

Example

Solve: 7x = 1 (mod 26)

First compute and check that gcd(26,7) = 1

26=3x7 + 5
7 = 1x5 + 2
5 =2%x2 + 1

2 =2x1+ 0

Example

Solve: 7x = 1 (mod 26)

Then rewrite equations in form for substitution

26=3%x7 + 5 5=26-3%7
7 = 1x5 4+ 2 2=7-1%5
5 =2%x2+1 1=5- 2%2

2 =2x1+ 0

Example

Solve: 7x = 1 (mod 26)

Apply substitutions from bottom to top.

26=3%7 + 5 5=26-3%7
7 = 1«5 4+ 2 2=7-1%5
5 =2%x2+1 1=5- 2x%2
2 =21+ 0
1 =5 - 2%2
= 5 - 2% (7-1%5)

(-2)x7 + 3%5
(-2)*x7 + 3%(26-3%7)
(=11) %7 + 3 %26

Example

Solve: 7x = 1 (mod 26)

Read off coefficient and reduce modulo 26.

26=3%7 + 5 5=26-3%7
7 =15+ 2 2=7-1%5
5 =2%x2+1 1=5- 2x%2
2 =21+ 0
1 =5 - 2%2
= 5 - 2% (7-1%5)

(-2)*7 4+ 3%5
(-2)*x7 + 3%(26-3%7)
(=11) %7 + 3 %26

Multiplicative inverse of 7 modulo 26
Now (—11) mod 26 =@/So, x = 15 + 26k for integer k.

Example of a more general equation

Now solve: 7y = 3 (mod 26)

We already computed that 15 is the multiplicative inverse
of 7 modulo 26. Thatis, 715 = 1 (mod 26)

If v is a solution, then multiplying by 15 we have
157 -y =15-3 (mod 26)

Substituting 15 -7 = 1 (mod 26) on the left gives
y=1-y=15-3 =19 (mod 26)

This shows that every solution y is congruent to 19.

Example of a more general equation

Now solve:7y = 3 (mod 26)

Multiplying both sides of y = 19 (mod 26) by 7 gives
7y =719 = 3 (mod 26)

So,any ¥ = 19 (mod 26) is a solution.

Thus, the set of numbers of the form y = 19 + 26k,
for any integer k, are exactly solutions of this equation.

ocd(a,m)=1ifmisprimeand 0 < a <m so
can always solve these equations mod a prime.

Math mod a prime is especially nice

mod 7

Attack on RSA security with GCD

 RSA public key includes m that is the product
of two large randomly chosen primes p, q

— Everyone can see all the public keys (millions)
— Security depends on keeping p and q secret
— OK since factoring m seems very hard

* In 2012 a new attack using GCD broke a
huge number of RSA public keys!

— Weak keys: Algorithms/devices cut corners:
Skimped on random bits or size of primes

Attack on RSA security with GCD

Weak keys: few random bits

— Few enough that some public keys m, and m,
happen to share just one of their two factors:
m, = pq and m, = pr
— Then can break both since p = gcd(m, m,)

2012: 11 million RSA keys, 23,500 broken
2016: 1024-bit RSA keys available from Internet
— 26 million keys, 63,500 broken
2019: 750 million RSA keys, 250,000 broken
— loT (Internet of Things) devices often the culprit

RSA Relies on Modular Exponentiation

36

a°

a4

a3

a2

al

mod 7

Modular Exponentiation: (Essential for RSA)

 Compute 78365830427

 Compute 78365%%4%° mod 104729

* Output is small
— need to keep intermediate results small

Small Multiplications

By the multiplicative property modulo m, if you want to compute
ab mod m then you can do the following:

1. Reduce a and b modulo m to get a mod m and b mod m
2. Multiply to produce ¢ = (a mod m)(b mod m)
3. Output c mod m
a=qm-+r
Claim: ¢ mod m = ab mod m
Proof: Just need to show that ¢ = ab (mod m).
That follows from (a mod m) = a (mod m)
(b mod m) = b (mod m)

and the multiplicative property since c is the product of the
left sides and ab is the product of the right sides. B

Repeated Squaring - small and fast

Then we have ab mod m = ((a mod m)(b mod m)) mod m

So a?modm = (amodm)? modm
and a*modm = (a? mod m)? mod m
and a8 mod m = (a* mod m)? mod m
and al®* mod m = (a® mod m)? mod m
and a3?2 mod m = (al® mod m)? mod m

Can compute a* mod m for k = 2% in only i steps
What if k is not a power of 2?

Fast Modular Exponentiation

Simple Example:

10

To compute a™* mod m:

Compute a2 modm = (a modm)? mod m
a*modm = (a? mod m)? mod m
a8 mod m = (a*mod m)? mod m

Then a'® mod m = ((a® mod m)(a? mod m)) mod m

Also a'l mod m = ((a10 mod m)(a mod m))mod m

Fast Exponentiation Algorithm

80429 in binary is 10011101000101101
80429 =216 + 213 + 212+ 211 + 29 + 25 + 23 + 22 + 20

580429 = 3216+213+212+2"+29+25+23+22+2°
16 13 12 11 9 5 3 2 0
= 5216, 213 212 oM 29 25 23 92 2

16 13 12 11 9 5 3 2 0

16
= (...(((((a% 1rgod m -
a2 mod m)modm - Uses only 16 + 8 = 24
a2'? mod m) mod m - multiplications

1
a2’ mod m) mod m -
29
a< mod m) mod m -
25
a< mod m) mod m -
23
a< mod m) mod m -
22
a< mod m) mod m -
20
a< mod m) mod m

The fast exponentiation algorithm computes
a’ mod m using < 2log k multiplications mod m

Fast Exponentiation: a* mod m for all k

Another way....

. . 2
a’mod m = (af mod m) mod m

2j+1

a?*Imodm = ((@a mod m) - (@ mod m)) mod m

Recursive Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 9) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {

long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

a“mod m = (aj mod m)zmod m
a?’*Imodm = ((a mod m) - (a¥ mod m)) mod m

Using Fast Modular Exponentiation

* Your e-commerce web transactions use SSL (Secure
Socket Layer) based on RSA encryption

* RSA

— Vendor chooses random 1024-bit or 2048-bit primes p, q
and 1024/2048-bit exponent e. Computesm =p - q

— Vendor broadcasts (m, e)

— To send a to vendor, you compute C = a® mod m using
fast modular exponentiation and send C to the vendor.

— Using secret p, g the vendor computes d that is the
multiplicative inverse of e mod (p — 1)(q — 1).

— Vendor computes €% mod m using fast modular
exponentiation.

— Fact: a = C? modm for 0 < a < munless p|a or q|a

Sets

Sets

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1}

B=1{1, 3, 2}

Cc={Ld, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, &, a}

Some Common Sets

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z is the set of Integers; Z ={...,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %5, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, ,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
D ={} is the empty set; the only set with no elements

Sets can be elements of other sets

For example
A = {{1},{2},{1,2},0}
B={1,2}

Then B € A.

Definitions

A and B are equal if they have the same elements

A=B := Vx(xe A x e B)
 Ais asubset of B if every element of A is also in B

AcB :=Vx(xeA—>xeB)

* Notes: (4 =B) = (A< B) A(Bc 4)
A2 BmeansB € A

ACBmeansAS BbutA#B

Definition: Equality

A and B are equal if they have the same elements

A=B := Vx(xe A x e B)

A=1{1, 2, 3}
B=1{3, 4,5}
C={3, 4}
D=14,3, 3} Which sets are equal to each other?
E=1{3, 4,3}
F=14, 3}

Definition: Subset

A is a subset of B if every element of A is also in B

AcB :=Vx(xeA—>xeB)

A={1, 2, 3}
B ={3, 4,5}
C=1{3, 4}
QUESTIONS
O A?
AcB?

CcB?

Definition: Subset

A is a subset of B if every element of A is also in B

AcB :=Vx(xeA—>xeB)

Note the domain restriction.

We will use a shorthand restriction to a set
VxeA, P(x) := Vx(x € A— P(x))

Restricting all quantified variables improves clarity

Sets & Logic

Building Sets from Predicates

Every set S defines a predicate “x € S”.

We can also define a set from a predicate P:

S = {x:P(x)}

S = the set of all x (in some universe U) for
which P(x) is true

In other words... x € S & P(x)

Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

Suppose we want to prove A € B.

This is a predicate:

ACB = Vx(xe A—>x e B)

Typically: use direct proof of the implication

Proofs About Sets ACB = Vx{xeA—>xeB)

A = {x:P(x)} B := {x:Q(x)}

Prove that A € B for P(x):= “x>2” and Q(x):=“x?>3"

Proof: Let x be an arbitrary object (in the universe).

Suppose that x € A. By definition, this means P (x).
.. Therefore x > 2 so x? > 4 which implies x2 > 3.

Thus, we have Q(x). By definition, this means x € B.

Since x was arbitrary, we have shown, by definition,
that A € B. |

