CSE 311: Foundations of Computing

Lecture 14: Induction

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!

```
for (int i=0; i < n; n++) { ... }
```

Show P(i) holds after i times through the loop

Let a, b, m > 0 be arbitrary. Let $k \in \mathbb{N}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$.

We know that by multiplying congruences we get

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$$

Then, repeating this many times, we have:

$$(a^{2} \equiv b^{2} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^{3} \equiv b^{3} \pmod{m}$$

$$(a^{3} \equiv b^{3} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^{4} \equiv b^{4} \pmod{m}$$

$$(a^{k-1} \equiv b^{k-1} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^{k} \equiv b^{k} \pmod{m}$$

The "..." is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

Induction Is A Rule of Inference

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(5)?

Induction Is A Rule of Inference

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(5)?

First, we have P(0).

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.

Since P(0) is true and $P(0) \rightarrow P(1)$, by Modus Ponens, P(1) is true.

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.

Since P(1) is true and $P(1) \rightarrow P(2)$, by Modus Ponens, P(2) is true.

. . .

$$P(0)$$

$$\forall k \ (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

$$\stackrel{\bigcirc}{\triangleright} P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

- $4. \quad \forall k \ (P(k) \rightarrow P(k+1))$
 - 5. \forall n P(n)

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

- 1. P(0)
- 2. Let k be an arbitrary integer ≥ 0

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Intro \forall : 2, 3

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

∀x, x70 -7 P(x)

- 1. P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3.1. P(k)
 - 3.2. ...
 - 3.3. P(k+1)
- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Assumption

Direct Proof Rule

Intro \forall : 2, 3

Translating to an English Proof

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

1. Prove P(0)

Base Case

- 2. Let k be an arbitrary integer ≥ 03.1. Suppose that P(k) is true
 - 3.2. ...
 - 3.3. Prove P(k+1) is true

Inductive Hypothesis

Inductive Step

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Direct Proof Rule

Intro \forall : 2, 3

Translating to an English Proof

Conclusion

Induction English Proof Template

```
[...Define P(n)...]
We will show that P(n) is true for every n \in \mathbb{N} by Induction.
Base Case: [...proof of P(0) here...]
Induction Hypothesis:
Suppose that P(k) is true for an arbitrary k \in \mathbb{N}.
Induction Step:
[...proof of P(k+1) here...]
The proof of P(k+1) must invoke the IH somewhere.
So, the claim is true by induction.
```

Inductive Proofs In 5 Easy Steps

Proof:

- **1.** "Let P(n) be.... We will show that P(n) is true for every $n \geq 0$ by Induction."
- **2.** "Base Case:" Prove P(0)
- 3. Inductive Hypothesis:
 - Suppose P(k) is true for an arbitrary integer $k \geq 0$ "
- 4. "Inductive Step:" Prove that P(k+1) is true.

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!!)

5. "Conclusion: Result follows by induction"

What is $1 + 2 + 4 + ... + 2^n$?

• 1 + 2 + 4

•
$$1 + 2 = 3$$

$$\bullet \ 1 + 2 + 4 + 8 = 15$$

$$\bullet$$
 1 + 2 + 4 + 8 + 16 = 31

It sure looks like this sum is $2^{n+1} - 1$ How can we prove it?

We could prove it for n=1, n=2, n=3, ... but that would literally take forever.

Good that we have induction!

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} - 1$ ". We will show P(n) is true for all natural numbers by induction.

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $2^0 + 2^1 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.
- 4. Induction Step:

$$2^{0} + 2^{1} + ... + 2^{k} = 2^{k+1} - 1$$
 by IH

Adding 2^{k+1} to both sides, we get:

$$2^{0} + 2^{1} + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $2^0 + 2^1 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.
- 4. Induction Step:

We can calculate

$$2^{0} + 2^{1} + ... + 2^{k} + 2^{k+1} = (2^{0} + 2^{1} + ... + 2^{k}) + 2^{k+1}$$

$$= (2^{k+1} - 1) + 2^{k+1}$$
 by the IH
$$= 2(2^{k+1}) - 1$$

$$= 2^{k+2} - 1,$$

which is exactly P(k+1).

Alternative way of writing the inductive step

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.
- 4. Induction Step:

We can calculate

$$2^{0} + 2^{1} + ... + 2^{k} + 2^{k+1} = (2^{0}+2^{1}+... + 2^{k}) + 2^{k+1}$$

$$= (2^{k+1}-1) + 2^{k+1}$$
 by the IH
$$= 2(2^{k+1}) - 1$$

$$= 2^{k+2} - 1,$$

which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Prove
$$1 + 2 + 3 + ... + n = n(n+1)/2$$

1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.

Summation Notation

$$\sum_{i=0}^{n} i = 0 + 1 + 2 + 3 + \dots + n$$

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.

Summation Notation

$$\sum_{i=0}^{n} i = 0 + 1 + 2 + 3 + \dots + n$$

Prove
$$1 + 2 + 3 + ... + n = n(n+1)/2$$

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$. I.e., suppose 1 + 2 + ... + k = k(k+1)/2

"some" or "an" not any!

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$. I.e., suppose 1 + 2 + ... + k = k(k+1)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$. I.e., suppose 1 + 2 + ... + k = k(k+1)/2
- 4. Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$. I.e., suppose 1 + 2 + ... + k = k(k+1)/2
- 4. Induction Step:

1 + 2 + ... + k + (k+1) =
$$(1 + 2 + ... + k) + (k+1)$$

= $k(k+1)/2 + (k+1)$ by IH
= $(k+1)(k/2 + 1)$
= $(k+1)(k+2)/2$

So, we have shown 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2, which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Induction: Changing the start line

- What if we want to prove that P(n) is true for all integers $n \ge b$ for some integer b?
- Define predicate Q(k) = P(k + b) for all k.
 - -Then $\forall n \ Q(n) \equiv \forall n \geq b \ P(n)$
- Ordinary induction for Q:
 - Prove $Q(0) \equiv P(b)$
 - Prove

$$\forall k (Q(k) \rightarrow Q(k+1)) \equiv \forall k \ge b(P(k) \rightarrow P(k+1))$$

Inductive Proofs starting at b in 5 Easy Steps

- 1. "Let P(n) be... . We will show that P(n) is true for all integers $n \ge b$ by induction."
- 2. "Base Case:" Prove P(b)
- 3. "Inductive Hypothesis: Assume P(k) is true for an arbitrary integer $k \ge b$ "
- 4. "Inductive Step:" Prove that P(k+1) is true: Use the goal to figure out what you need.
 - Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!!)
- 5. "Conclusion: P(n) is true for all integers $n \ge b$ "

1. Let P(n) be "3" $\geq n^2+3$ ". We will show P(n) is true for all integers $n \geq 2$ by induction.

- **1.** Let P(n) be "3" $\geq n^2+3$ ". We will show P(n) is true for all integers $n \geq 2$ by induction.
- **2.** Base Case (n=2): $3^2 = 9 \ge 7 = 4+3 = 2^2+3$ so P(2) is true.

- **1.** Let P(n) be " $3^n \ge n^2+3$ ". We will show P(n) is true for all integers $n \ge 2$ by induction.
- 2. Base Case (n=2): $3^2 = 9 \ge 7 = 4+3 = 2^2+3$ so P(2) is true.
- 3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 2$. I.e., suppose $3^k \ge k^2 + 3$.

- **1.** Let P(n) be "3" $\geq n^2+3$ ". We will show P(n) is true for all integers $n \geq 2$ by induction.
- **2.** Base Case (n=2): $3^2 = 9 \ge 7 = 4+3 = 2^2+3$ so P(2) is true.
- 3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 2$. I.e., suppose $3^k \ge k^2 + 3$.
- 4. Inductive Step:

Goal: Show P(k+1), i.e. show $3^{k+1} \ge (k+1)^2 + 3$

- **1.** Let P(n) be "3" $\geq n^2+3$ ". We will show P(n) is true for all integers $n \geq 2$ by induction.
- **2.** Base Case (n=2): $3^2 = 9 \ge 7 = 4+3 = 2^2+3$ so P(2) is true.
- 3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 2$. I.e., suppose $3^k \ge k^2 + 3$.
- 4. Inductive Step:

Goal: Show P(k+1), i.e. show $3^{k+1} \ge (k+1)^2 + 3 = k^2 + 2k + 4$

- **1.** Let P(n) be "3" $\geq n^2+3$ ". We will show P(n) is true for all integers $n \geq 2$ by induction.
- **2.** Base Case (n=2): $3^2 = 9 \ge 7 = 4+3 = 2^2+3$ so P(2) is true.
- 3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 2$. I.e., suppose $3^k \ge k^2 + 3$.
- 4. Inductive Step:

Goal: Show P(k+1), i.e. show
$$3^{k+1} \ge (k+1)^2 + 3 = k^2 + 2k + 4$$

 $3^{k+1} = 3(3^k)$

 \geq 3(k²+3) by the IH

 $= 3k^2 + 9$

 $= k^2 + 2k^2 + 9$

 $\geq k^2+2k+4 = (k+1)^2+3$ since $k \geq 2$.

Therefore P(k+1) is true.

Prove
$$3^n \ge n^2 + 3$$
 for all $n \ge 2$

- 1. Let P(n) be "3" $\geq n^2+3$ ". We will show P(n) is true for all integers $n \geq 2$ by induction.
- 2. Base Case (n=2): $3^2 = 9 \ge 7 = 4 + 3 = 2^2 + 3$ so P(2) is true.
- 3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 2$. I.e., suppose $3^k \ge k^2 + 3$.
- 4. Inductive Step:

Goal: Show P(k+1), i.e. show
$$3^{k+1} \ge (k+1)^2 + 3 = k^2 + 2k + 4$$

 $3^{k+1} = 3(3^k)$
 $\ge 3(k^2+3)$ by the IH
 $= k^2 + 2k^2 + 9$

 $\geq k^2 + 2k + 4 = (k+1)^2 + 3$ since $k \geq 2$.

Therefore P(k+1) is true.

5. Thus P(n) is true for all integers $n \ge 2$, by induction.

• Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:

1. Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with $\frac{1}{n}$. We prove P(n) for all $n \ge 1$ by induction on n.

- 1. Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with $\frac{1}{n}$. We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1

- 1. Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with $\frac{1}{n}$. We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1
- 3. Inductive Hypothesis: Assume P(k) for some arbitrary integer $k \ge 1$

- 1. Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with $\frac{1}{n}$.

 We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1
- 3. Inductive Hypothesis: Assume P(k) for some arbitrary integer $k \ge 1$
- 4. Inductive Step: Prove P(k+1)

Apply IH to each quadrant then fill with extra tile.