CSE 311.: Foundations of Computing

Lecture 14: Induction




Mathematical Induction

Method for proving statements about all natural numbers

— A new logical inference rule!
* It only applies over the natural numbers

* The idea is to use the special structure of the naturals
to prove things more easily

— Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) { .. }
* Show P(i) holds after i times through the loop



Prove va,b,m > 0V k € N ((a = b (mod m)) = (a* = b* (mod m))

Let a, b, m > 0 be arbitrary. Let k € N be arbitrary.

Suppose that a = b (mod m).

We know that by multiplying congruences we get
(a=b(modm) A a=b(modm)) - a? = b? (mod m)

Then, repeating this many times, we have:
(a? = b? (modm) A a=b (modm)) - a® = b3 (mod m)
(a® = b3 (modm) A a =b (modm)) - a* = b* (mod m)

(ak_l = bh* 1 (modm) A a=b (mod m)) — a® = b* (mod m)

The “...” is a problem! We don’t have a proof rule that
allows us to say “do this over and over”.



But there such a property of the natural numbers!

Domain: Natural Numbers
P—C

Jp(0)
Dvk (P(k) — P(k + 1))

s~ Vn P(n)




Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?



Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

M

P(0)—P(1) P(1)—>P(2) P(2)—P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) PR2) P@3) P#) PG

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)




Using The Induction Rule In A Formal Proof

Up(0)
vk (P(k) — Pk + 1))

. Vn P(n)

> P(0)

N 4. 'k (P(k) - P(k+1))
5. VnP(n) Induction: 1, 4

SY——————




Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)
2. Let k be an arbitrary integer >0

3. P(k) > P(k+1)
4. Vk(P(k) > P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0) ¢
vk (P(k) — P(k + 1)) )
x 7Y
~Vn P(n
(n) 5?0

1. P(0)
2. Let k be an arbitrary integer >0 [’/

3.1. P(k) Assumption

3.2. ..

3.3. P(k+1)
3. P(k) > P(k+1) Direct Proof Rule
4. Vk(P(k) > P(k+1)) IntroV: 2, 3

5. VnP(n) Induction: 1, 4



Translating to an English Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

Base Case

1. Prove P(0)

2. Let k be an arbitrary integer >0 | Inductive
3.1. Suppose that P(k) is true | Hypothesis
3.2. ... Inductivﬂ
3.3. Prove P(k+1) is true Step

3. P(k) > P(k+1) Direct Proof Rule

4. Yk (P(k) —> P(k+1)) Intro V: 2, 3

5. VnP(n) Induction: 1, 4

—



Translating to an English Proof

1. Prove P(0) | Base Case
2. Let k be an arbitrary integer 20
3.1. Assume that P(k) is true

Inductive
Hypothesis

3.2. .. Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Yk (P(k) = P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4

Induction English Proof Template
[...Define P(n)...]
We will show that P(n) is true for every n € N by Induction.

Base Case: [...proof of P(0) here...]
Induction Hypothesis:

Suppose that P(k) is true for an arbitrary k € N.
Induction Step:

[...proof of P(k + 1) here...]

The proof of P(k + 1) must invoke the IH somewhere.
So, the claim is true by induction.




Inductive Proofs In 5 Easy Steps

Proof:

1. “‘Let P(n) be... . We will show that P(n) is true for every
N n = 0 by Induction.”
. “Base Case:” Prove P(0)
3. #Inductive Hypothesis:
\ASuppose P(k) is true for an arbitrary integer k = 0”
4. “Inductive Step:” Prove that P(k + 1) is true.
Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !1)

5. “Conclusion: Result follows by induction”



Whatis1 + 2 + 4 + ... + 2™?

= 1
e 1 4+ 2 = 3
c 14+ 2+ 4 =

e 14+ 2+ 4+ 8 = 15
14+ 2+ 4+ 8+ 16 = 31

It sure looks like this sum is 2**1 — 1

—

How can we prove it?

We could proveitforn =1,n=2,n = 3, ... but
that would literally take forever.

Good that we have induction!



Provel + 2 + 4 + ... 4+ 20 =2nt1_1




Provel + 2 + 4 + ... 4+ 20 =2nt1_1

1. LetP(n)be “2°+21+ .. +2"n=2"1-1" We will show P(n) is
true for all natural numbers by induction.



Provel + 2 + 4 + ... 4+ 20 =2nt1_1

1. LetP(n)be “2°+21+ .. +2"n=2"1-1" We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0 P(0)is true.



Provel + 2 + 4 + ... 4+ 20 =2nt1_1

1. LetP(n)be “2°+21+ .. +2"n=2"1-1" We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 20=1=2-1=2%1-1s0P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0, i.e., that[20 + 21 + ... + 2k = 2k+1 — 1,




Provel + 2 + 4 + ... 4+ 20 =2nt1_1

1. LetP(n)be “2°+21+ .. +2"n=2"1-1" We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 20=1=2-1=2%1-1s0P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k 2 0, i.e., that 20+ 21 + ... + 2k=2k1 17,

4. Induction Step:

N

Goal: Show P(k+1), i.e. show 20 + 21 + . + 2k + 2k+1 = 2k+2 9

—



Provel + 2 + 4 + ... 4+ 20 =2nt1_1

1.

N

Let P(n) be “2°+ 21+ ...+ 2" =2"m1-1", We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 20=1=2-1=2%1-1s0P(0)is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0, i.e., that 20 + 21 + .., + 2k=2k+1 1

Induction Step:

20421+ . +2k=2kil1 9 byIH%
Addino both sides, we get:

20+ 21 4 | 42k 4 k¢l = Dkl 4 Pk+l _ 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2,
So, we have 20+ 21 + ., + 2k + 2k+1 = Jk+2 _ 1 "which is

exactly P(k+1).



Provel + 2 + 4 + ... 4+ 20 =2nt1_1

1.

N

Let P(n) be “2°+ 21+ ...+ 2" =2"m1-1", We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 20=1=2-1=2%1-1s0P(0)is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,
Induction Step:

We can calculate

‘/—”_'_’“_T
20421 + [+ 2k 4 2K+1 =(204214 4 2K) 4 2k+d

= (21— 1) + 2k+1 by the IH
=2(2x1) -1
— 2k+2 — 1’

which is exactly P(k+1).

Alternative way of writing the inductive step



Provel + 2 + 4 + ..+ 2n =2"+1_ 1

1. LetP(n)be “2°+21+ .. +2"n=2"1-1" We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 20=1=2-1=2%1-1s0P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0, i.e., that 20 + 21 + .., + 2k=2k+1 1

4. Induction Step:

We can calculate
20421 4+ 4+ 2k 42K+ = (204214 4 2K) 4 2k+1

N

= (2k+1 = 1) + 2k+1 by the IH
=2(2x1) -1
— 2k+2 — 1’

which is exactly P(k+1).
5. Thus P(n) is true for all n €N, by induction.



Provel + 2 +3 4+ ...+ n=nn+1)/2




Provel + 2 +3 4+ ...+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+l1)/2". We will show P(n) is

true for all natural numbers by induction.
-

Summation Notation
dYitgi=0+1+2+3+ ...+ n




Provel + 2 +3 4+ ...+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+l1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Summation Notation
toi=0+14+2+3+ ..4+n




Provel + 2 +3 4+ ...+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+l1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 +2 + ..+ k = k(r+1)/5

|
“some” or “an”
not any!




Provel + 2 +3 4+ ...+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+l1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.[l.e., suppose 1 + 2 + ...+ k = k(k+1)/2




Provel + 2 +3 4+ ...+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+l1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k 2 0. l.e., suppose 1 +2 + ..+ k = k(k+1)/2

4. Induction Step:

_{Goal: Show P(k+1), i.e. Show 1+2 + .+ kt (k1) = (kt1)(k+2)/2

—




Provel + 2 +3 4+ ...+ n=nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k > 0. l.e., suppose 1 + 2 + ..+ k =k(k+1)/2

Induction Step:
1+2+..+k+(k+1)

_~—

(1+2+..+k)+ (k+1)

k(k+1)/2 + (k+1)

(k+1)(k/2 + 1) g £l = 5
(k+1)(k+2)/2

So, we have shown 1 + 2 fr-+/k+(k\+T) = (k+1)(k+2)/2,

which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Induction: Changing the start line

 What if we want to prove that P(n) is true
for all integers n = b for some integer b?

 Define predicate Q(k) = P(k + b) for all k.
—Then VnQ(n) =vn=>b P(n)

* Ordinary induction for Q:
— Prove Q(0) = P(b)

— Prove
vk (Q(k) = Q(k + 1)) =Vk = b(P(k) — P(k + 1))



Inductive Proofs starting at b ih 5 Easy Steps

\/

. “Let P(n) be.... We will show that P(n) is true for all
integers n = b by induction.”
———

. “Base Case:” Prove P(b)
. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k = b”
. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !1)
. “Conclusion: P(n) is true for all integers n = b”




Prove 3"@ n* + 3 for aI@
N —



Prove 3" > n% 4+ 3 foralln > 2

1. Let P(n) be “3" > n%+3”. We will show P(n) is true for all
integers n > 2 by induction.

P——



Prove 3" > n? + 3 forall n 2@

1. Let P(n) be “3" > n%+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=92>7=4+3=2%+3s0 P(2) is true.



Prove 3" > n% 4+ 3 foralln > 2

1.

2.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 3%2=9>7=4+43=22+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k > 2. l.e., suppose 3%> k2+3.
—— = >




Prove 3" > n% 4+ 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 3%2=9>7=4+43=22+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3




Prove 3" > n% 4+ 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 3%2=9>7=4+43=22+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4




Prove 3"/%712 + 3 foralln = 2
N

1.

2.
3.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 3%2=9>7=4+43=22+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4
3Jk+1 = 3(3k)

> 3(k?+3) by the IH

= 3k?+9

= k2+2k2+9

> k2+2k+4 = (k+1)%+3 since k > 2.
Therefore P(k+1) is true.




Prov@ n? + 3 fo a(ﬁzij

"> n2+3”. We WI|| show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32= 9% 7 =§+3 = 2243 50 P(2) is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

4. Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4
3k+1 = 3(3K)
> 3(k?+3) by the IH
= k2+2k?+9
> k2+2k+4 = (k+1)%+3 since k > 2.
Therefore P(k+1) is true.
5. Thus P(n) is true for all integers n > 2, by induction.




Checkerboard Tiling

 Prove that a 2" x 2" checkerboard with one square
removed can be tiled with:




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with [
We prove P(n) for alln = 1 by mductlon on n.




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with [
We prove P(n) for alln = 1 by mductlon on n.

2. Base Case: n=1




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with [
We prove P(n) for alln = 1 by mductlon on n.

2. Base Case: n=1

3. Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1




Checkerboard Tiling

1.

Let P(n) be any 2" x 2" checkerboard with one square

removed can be tiled with

We prove P(n) for alln = 1 by mductlon on n.

Base Case: n=1

Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Inductive Step: Prove P(k+1)

T —

[

Apply IH to
each quadrant
| then fill with
extra tile.




