
CSE 311: Foundations of Computing

Lecture 14: Induction



Mathematical Induction

Method for proving statements about all natural numbers

– A new logical inference rule!
• It only applies over the natural numbers
• The idea is to use the special structure of the naturals 

to prove things more easily

– Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) { … }
• Show P(i) holds after i times through the loop



Let 𝑎, 𝑏,𝑚 > 0 be arbitrary. Let 𝑘 ∈ ℕ be arbitrary.
Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).
We know that by multiplying congruences we get 

𝑎 ≡ 𝑏 mod 𝑚 ∧ 𝑎 ≡ 𝑏 mod 𝑚 → 𝑎! ≡ 𝑏! (mod 𝑚)

Then, repeating this many times, we have:
𝑎! ≡ 𝑏! mod 𝑚 ∧ 𝑎 ≡ 𝑏 mod 𝑚 → 𝑎" ≡ 𝑏" mod 𝑚
𝑎" ≡ 𝑏" mod 𝑚 ∧ 𝑎 ≡ 𝑏 mod 𝑚 → 𝑎# ≡ 𝑏# (mod 𝑚)

…
𝑎$%& ≡ 𝑏$%& mod 𝑚 ∧ 𝑎 ≡ 𝑏 mod 𝑚 → 𝑎$ ≡ 𝑏$ (mod 𝑚)

The “…” is a problem!  We don’t have a proof rule that 
allows us to say “do this over and over”.

Prove ∀𝑎, 𝑏,𝑚 > 0 ∀ 𝑘 ∈ ℕ ((𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚)) → (𝑎! ≡ 𝑏! (𝑚𝑜𝑑 𝑚))



But there such a property of the natural numbers!

Domain: Natural Numbers

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0)→ P(1).  

Since P(0) is true and P(0)→ P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1)→ P(2).

Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.
…

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1.  Assume that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1.  Assume that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. P(k) Assumption
3.2.  ...
3.3.  P(k+1)

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Translating to an English Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. Suppose that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Translating to an English Proof

[…Define P(n)…]
We will show that 𝑃(𝑛) is true for every 𝑛 ∈ ℕ by Induction.
Base Case: […proof of 𝑃(0) here…]
Induction Hypothesis: 

Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ∈ ℕ.
Induction Step:

[…proof of 𝑃(𝑘 + 1) here…]
The proof of 𝑃(𝑘 + 1)must invoke the IH somewhere.

So, the claim is true by induction.

Induction English Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 

𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:

Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: Result follows by induction”



What is 1 + 2 + 4 + … + 2𝑛 ?

• 1 + 2 + 4 + 8 + 16 = 1
• 1 + 2 + 4 + 8 + 16 = 3
• 1 + 2 + 4 + 8 + 16 = 7
• 1 + 2 + 4 + 8 + 16 = 15
• 1 + 2 + 4 + 8 + 16 = 31

It sure looks like this sum is 2+,- − 1
How can we prove it?

We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but 
that would literally take forever.
Good that we have induction!



Prove 1 + 2 + 4 + … + 2𝑛 = 2,-.– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is  
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2,-.– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is  
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2,-.– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is  
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
Goal:  Show P(k+1I.e.,), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1

1 + 2 + … + 2k = 2k+1 – 1 by IH
Adding 2k+1 to both sides, we get:

1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2,-.– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is  
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2,-.– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is  
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

20 + 21 + … + 2k = 2k+1 – 1 by IH
Adding 2k+1 to both sides, we get:

20 + 21 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2,-.– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is  
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

We can calculate
20 + 21 + … + 2k + 2k+1 = (20+21+ … + 2k) + 2k+1

= (2k+1 – 1) + 2k+1 by the IH
= 2(2k+1) – 1
= 2k+2 – 1,

which is exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2,-.– 1

Alternative way of writing the inductive step



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is  
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

We can calculate
20 + 21 + … + 2k + 2k+1 = (20+21+ … + 2k) + 2k+1

= (2k+1 – 1) + 2k+1 by the IH
= 2(2k+1) – 1
= 2k+2 – 1,

which is exactly P(k+1).
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2,-.– 1



Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2

Summation Notation
∑/01, 𝑖 = 0 + 1 + 2 + 3 + … + 𝑛



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2

Summation Notation
∑/01, 𝑖 = 0 + 1 + 2 + 3 + … + 𝑛



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2

1 + 2 + … + n  n(n+1)/2 by IH
Adding n+1 to both sides, we get:

1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2

“some” or “an”
not any!



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2

1 + 2 + … + n  n(n+1)/2 by IH
Adding n+1 to both sides, we get:

1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + …+ k+ (k+1) = (k+1)(k+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  

1 + 2 + … + k + (k+1) = (1 + 2 + … + k) + (k+1) 
= k(k+1)/2 + (k+1)  by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2

So, we have shown 1 + 2 + … + k + (k+1) = (k+1)(k+2)/2, 
which is exactly P(k+1).

5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



Induction: Changing the start line 

• What if we want to prove that 𝑃(𝑛) is true 
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏?

• Define predicate 𝑄 𝑘 = 𝑃(𝑘 + 𝑏) for all 𝑘.
– Then ∀𝑛 𝑄 𝑛 ≡ ∀𝑛 ≥ 𝑏 𝑃(𝑛)

• Ordinary induction for 𝑄:  
– Prove 𝑄 0 ≡ 𝑃 𝑏

– Prove                                                        
∀𝑘 𝑄 𝑘 ⟶ 𝑄 𝑘 + 1 ≡ ∀𝑘 ≥ 𝑏 𝑃 𝑘 ⟶ 𝑃 𝑘 + 1



Inductive Proofs starting at 𝒃 in 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 𝒃 by induction.”

2. “Base Case:” Prove 𝑃(𝒃)
3. “Inductive Hypothesis:

Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒃”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”



Prove 3𝑛 ≥ 𝑛2 + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):  32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
3k+1 = 3(3k)

≥ 3(k2+3) by the IH
= k2+2k2+9
≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛2 + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2.
4. Inductive Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
3k+1 = 3(3k)

≥ 3(k2+3) by the IH
= k2+2k2+9
≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛2 + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
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Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some  

arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to 
each quadrant 
then fill with 
extra tile.


