CSE 311.: Foundations of Computing

Lecture 15: Recursion & Strong Induction
Applications: Fibonacci & Euclid
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“And another thing . .. | want you to be more assertive!
I'm tired of everyone calling you Alexander the
Pretty-Good!”



Last class: Inductive Proofs In 5 Easy Steps

. “Let P(n) be.... We will show that P(n) is true for all
integers n z@by induction.”

. “Base Case:” Prove P(b) <—
. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(k) is true”
. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !1)

. “Conclusion: P(n) is true for all integers n = b”



Recall: Induction Rule of Inference

Domain: Natural Numbers 0, P(0)
@D vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prov

P(0)—P(1) P(1)—>P(2) P(2)—P(3) P(3)—P(4) P(4)—P(5)
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Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)—P(2) P(2)—P(3) P(3)—P(4) P(4)—P(5)

/N 7 N 7N 7 N N
P(0) P(1) P(2) P(3) P(4) P(5)

We made it harder than we needed to ...
When we proved P(2) we knew BOTH P(0) and P(1)
When we proved P(3) we knew P(0) and P(1) and P(2)
When we proved P(4) we knew P(0 2),P(3)
etc.

That’s the essence of the idea jof Strong Induction.




Strong Induction




Strong Induction

P(0) vk (vj(0<j<k-P())-Plk+1)

- Vn }.)..(,T.l.)

Strong induction for P follows from ordinary induction for
where

/?Q(k) = Vj(0<j<k-P())

Note that Q(0) = P(0)and Q(k+ 1) =Q(k) AP(k+ 1)
and vn Q(n) = Vvn P(n)



Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all

integers n induction.”
2. “Base Case:” Prove P(b) 6
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
true”
4. “Inductive Step:” Prove that is true:
Use the goal to figure out whatyou need.

Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !1)

5. “Conclusion: P(n) is true for all integers n = b”



Strong Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We-will show that P(n) is true for all
integers n zy strong induction.” _d

2. “Base Case:” Prove P(b)<= ~ A
3. “Inductive Hypothesis:

Assume that for some arbitrary integer k = b,

P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that@is true:

Use the goal to figure out what you need.

Make sure you are using I.H. (that P(b), ..., P(k) are true)
and point out where you are using it.

(Don’t assume P(k + 1) 1) <l [/

5. “Conclusion: P(n) is true for all integers n = b”




Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime
factorization

48 = 20222+3

591 =3+197

45,523 = 45,523

321,950 =2+55°47 137
1,234,567,890 =233+ 5+ 3,607 - 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.

——

——




Every integer = 2 is a product of (one or more) primes.




@very integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n > @oy strong induction.
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Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.



Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.

3. Inductive Hyp: Suppose that for some arbitrary integer‘li > 2,
P(j) is true for every integer j between 2 and k W\M;UL



Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.

3. Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

4. Inductive Step: ]
Goal: Show P(k+1); i. e@@ is a product of primes
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Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.

3. Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

4. Inductive Step:

Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes




Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.

3. Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

4. Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b

where 2 <a, b <k.




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 < a3, b < k. By our IH, P(a) and P(b)/are true so we have
a=p.p,--p,and b=qq; g

for some primes p,,p,,..., P, 1,0, Js-
Thus, k+1 =ab = p;p, ** p,q:9, *** q. Which is a product of primes.

Since k > 2, one of these cases must happen and so P(k+1) is true.




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 < a3, b < k. By our IH, P(a) and P(b) are true so we have
a=pip,--pand b=qq, g
for some primes p4,p,,..., Py, A1,92,--» J-
Thus, k+1 =ab = p;p, ** p,q:9, *** q. Which is a product of primes.
Since k > 2, one of these cases must happen and so P(k+1) is true.

5. Thus P(n) is true for all integers n = 2, by strong induction.



Strong Induction is particularly useful when...

...we need to analyze methods that on input k make
a recursive call for an input different from k — 1.

e.g.: Recursive Modular Exponentiation:

— For exponent k > 0 it made a recursive call with
exponent j = k/2 when k was even orj = k — 1 when k
was odd.



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else { ffﬁ/"

long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

. . 2
a’’mod m = (af mod m) mod m

2j+1

a®’*Imodm = ((a mod m) - (a¥ mod m)) mod m



Strong Induction is particularly useful when...

...we need to analyze methods that on input k make
a recursive call for an input different from k — 1.

e.g.: Recursive Modular Exponentiation:

— For exponent k > 0 it made a recursive call with

exponent j = k/2 when k was evenorj =k — 1 when k
was odd.

We won’t analyze this particular method by strong
induction, but we could.

However, we will use strong induction to analyze
other functions with recursive definitions.
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Proven! <nt*foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.
2. Base Case (n=1): 1!=1-0!=1-1=1=11'so P(1) is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k > 1. l.e., suppose k! < kk,
<



Prov@s n"foralln =1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.
Inductive Hypothesis: Suppose tharue for some
arbitrary integer k > 1. l.e., suppose KT < kX,
Inductive Step:
Goal: Show P(k+1), i.e. show (k+1)! < (k+1)k+1 Z
(k+1)! = (k+1)-k! by definition of !
< (k+1)- k by the IH ¢
< (k+1)- (k+1)¢ since k>0
— (k+1)k+1
Therefore P(k+1) is true.

5. Thus P(n) is true for all n > 1, by induction.



More Recursive Definitions

Suppose that h: N — IR{

Then we have familiar summation notation:
_oh(i) = h(0)

z”“ h(i) =h(n+ 1)+ X", h() forn =0

There is also product notation:

_oh(i) = h(0)
H"+1 h(i) =h(n+1) [T h() forn =0




Fibonacci Numbers %‘, N ) N




Fibonacci Numbers

Jo=0 D’\l\/l/>/§/%/ 5
=1
fo="fno 1+ fo,, foralln > 2

@ Tamas Gorbe
& @TamasGorbe

A Mathematician's Way* of Converting Miles to

Kilometers
Smi ~ 8km = fymi= fyqkm
Smi =~ 13 km



Bounding Fibonacci l: f,, < 2" foralln 2@

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.




Bounding Fibonaccil: f,, < 2" foralln > 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,;=0< 1=2° so P(0) is true.

fo=0 f1=1
fn=fn-1+fno foralln =2




Bounding Fibonaccil: f,, < 2" foralln > 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,;=0< 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2! for every integer j from 0 to k.

W

fo=0 f1=1
fn=fn-1+fno foralln =2




Bounding Fibonaccil: f,, < 2" foralln > 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2! for every integer j from 0 to k.

4. Inductive Step:|Goal: Show P(k+1); that is, f,,; < 2k*!
Gse kn=ts f, =k =1~ 222
gL (L 7/L£ L
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Ql J(l “ng fnl-ll—fnzforalln>2
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Bounding Fibonaccil: f,, < 2" foralln > 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2! for every integer j from 0 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,; < 2k
Case k+1 =1:
Case k+1 > 2:

w N

fo=0 f1=1
fn=fn-1+fno foralln =2




Bounding Fibonaccil: f,, < 2" foralln > 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2 for every integer j from 0 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,; < 2k
Case k+1=1: Thenf,=1<2=2'so P(k+1) is true here.
Case k+1 > 2:

w N

fo=0 f1=1
fn=fn-1+fno foralln =2




Bounding Fibonaccil: f,, < 2" foralln > 0

1. Let P(n) be “f, <2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2 for every integer j from 0 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, < 21
Case k+1=1: Thenf,=1<2=2'so P(k+1) is true here.
Case k+1 > 2: Then f,,,=f, + f_; by definition
< 2K+ 2k1py the IH since k-1 >0
< 2k+ 2k =2.2k
= 2k+l

w N

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows. fo=0 f1=1
fn="Fn-1+tfn— foralln =2




Bounding Fibonaccil: f,, < 2" foralln > 0

1.

w N

5.

Let P(n) be “f, <2"”. We prove that P(n) is true for all

integers n > 0 by strong induction.

Base Case: f,=0 < 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2 for every integer j from 0 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,; < 2k+1

Case k+1=1: Thenf,=1<2=2'so P(k+1) is true here.
Case k+1 > 2: Then f,,,=f, + f_; by definition
< 2K+ 2k1py the IH since k-1 >0
< 2k4 2k = 2.2k = Pk+l
so P(k+1) is true in this case.
These are the only cases so P(k+1) follows.

Therefore by strong induction,
f, < 2" for all integers n > 0.

fo=0 f1=1
fn=fn-1+fno foralln =2




