
CSE 311: Foundations of Computing

Lecture 16: Recursively Defined Sets & Structural    

Induction



Last time: Fibonacci Numbers

�� = 0

�� = 1

�� = ���� + ���
 for all � ≥ 2



Last Time: Upper Bound  �� < 2� for all � ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

< 2k + 2k-1 by the IH since k-1 ≥ 0            

< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows.

5. Therefore by strong induction, 

fn < 2n for all integers n ≥ 0.
�� = �      �� = �

�� = ���� + ���� for all � ≥ �



Inductive Proofs with Multiple Base Cases

1. “Let �(�) be... . We will show that �(�) is true for all 

integers � ≥ � by induction.”

2. “Base Cases:” Prove �(�), �(� + 1), …, �(�)

3. “Inductive Hypothesis:

Assume �(�) is true for an arbitrary integer � ≥ �”   

4. “Inductive Step:” Prove that �(� + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume �(� + 1) !!)

5. “Conclusion: �(�) is true for all integers � ≥ �”



(Strong) Inductive Proofs with Multiple Base Cases

1. “Let �(�) be... . We will show that �(�) is true for all 

integers � ≥ � by strong induction.”

2. “Base Cases:” Prove �(�), �(� + 1), …, �(�)

3. “Inductive Hypothesis:

Assume that for some arbitrary integer � ≥ �, 

   �(�) is true for every integer � from � to �”   

4. “Inductive Step:” Prove that �(� + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. (that �(�), … , �(�) are true)

and point out where you are using it.                           

(Don’t assume �(� + 1) !!)

5. “Conclusion: �(�) is true for all integers � ≥ �”



Bounding Fibonacci I:  �� < 2� for all � ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

< 2k + 2k-1 by the IH since k-1 ≥ 0            

< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows.

5. Therefore by strong induction, 

fn < 2n for all integers n ≥ 0.
�� = �      �� = �

�� = ���� + ���� for all � ≥ �

Original Version

First case in 

inductive step 

didn’t need IH



Bounding Fibonacci I:  �� < 2� for all � ≥ 0

1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Cases: f0 = 0 < 1 = 20 so P(0) is true.

f1 = 1 < 2 = 21 so P(1) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

We have fk+1 = fk +  fk-1 by definition since k+1 ≥ 2

< 2k + 2k-1 by the IH since k-1 ≥ 0                     

< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true.

5. Therefore, by strong induction, fn < 2n for all integers n ≥ 0.

�� = �      �� = �

�� = ���� + ���� for all � ≥ �

Multiple Base Case Version

Two base cases

Smallest base caseLargest base case

Two base cases, and two 

previous values used



Bounding Fibonacci II:  �� ≥ 2� 
⁄  � � for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

�� = �      �� = �

�� = ���� + ���� for all � ≥ �

Two base cases, and two 

previous values used



Bounding Fibonacci II:  �� ≥ 2� 
⁄  � � for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds

f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

�� = �      �� = �

�� = ���� + ���� for all � ≥ �



Bounding Fibonacci II:  �� ≥ 2� 
⁄  � � for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds

f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 3, P(j) is true for every integer j from 2 to k.

�� = �      �� = �

�� = ���� + ���� for all � ≥ �



Bounding Fibonacci II:  �� ≥ 2� 
⁄  � � for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds

f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

�� = �      �� = �

�� = ���� + ���� for all � ≥ �



Bounding Fibonacci II:  �� ≥ 2� 
⁄  � � for all � ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds

f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

We have fk+1 = fk +  fk-1 by definition since k+1 ≥ 2

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2

≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

so P(k+1) is true.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 2.

�� = �      �� = �

�� = ���� + ���� for all � ≥ �



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0.  Then, " ≥ ��$�.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0.  Then, " ≥ ��$�.

Why does this help us bound the running time of Euclid’s 

Algorithm?

We already proved that �� ≥ 2� 
⁄  � � so ��$� ≥ 2(���) 
⁄

Therefore: if Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0

then " ≥ 2(���) 
⁄

so (� − 1)/2 ≤ log
 " or � ≤ 1 + 2 log
 "

i.e., # of steps ≤ 1 + twice the # of bits in ".



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0.  Then, " ≥ ��$�.

An informal way to get the idea: Consider an n step gcd

calculation starting with rn+1=a and rn=b:

rn+1 =   qnrn +  rn-1

rn = qn-1rn-1 + rn-2

…

r3 =   q2r2 + r1

r2 =   q1r1 + 0

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the

qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  

After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk

“Euclid’s algorithm is slowest on           

Fibonacci numbers and it takes 

only n steps for gcd(fn+1,fn)”f0



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes � steps

for gcd (", �) with " ≥ � > 0.  Then, " ≥ ��$�.

We go by strong induction on n.  

Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 

By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

n=2   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 2 steps.

Then a = q b  + r

b = q’ r + 0 for r ≥ 1. 

Since a ≥ b > 0, we must have q ≥ 1 and b ≥1 so

a = qb + r ≥ b + r ≥ 1+1 = 2 = f3 and P(2) holds

Induction Hypothesis: Suppose that for some integer k ≥ 2, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k ≥ 2, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 

Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Since k ≥ 2, if gcd(a,b) with a ≥ b>0 takes k+1 ≥ 3 steps, the first 3

steps of Euclid’s algorithm on a and b give us

a = q b + r

b  = q’ r + r’ 

r  = q” r’ + r”

and there are k-2 more steps after this. Note that this means that 

the gcd(b, r) takes k steps and gcd(r, r’) takes k-1 steps.

So since k, k-1 ≥ 1, by the IH we have b ≥ fk+1 and r ≥ fk.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k ≥ 2, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 

Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Since k ≥ 2, if gcd(a,b) with a ≥ b>0 takes k+1 ≥ 3 steps, the first 3

steps of Euclid’s algorithm on a and b give us

a = q b + r

b  = q’ r + r’ 

r  = q” r’ + r”

and there are k-2 more steps after this. Note that this means that 

the gcd(b, r) takes k steps and gcd(r, r’) takes k-1 steps.

So since k, k-1 ≥ 1, by the IH we have b ≥ fk+1 and r ≥ fk.

Also, since a ≥ b, we must have q ≥ 1. 

So a = q b + r ≥ b + r ≥ fk+1+ fk= fk+2 as required.



Last time: Recursive definitions of functions 

• 0! = 1;  (� + 1)! = (� + 1) · �! for all � ≥  0.

• -(0) = 0;   -(� + 1) = -(�) + 1 for all � ≥  0. 

• .(0) = 1;   .(� + 1) = 2 · .(�) for all � ≥  0. 

• /(0) = 1;   /(� + 1) = 20 � for all � ≥  0.



Last time: Recursive definitions of functions 

• Recursive functions allow general computation

– saw examples not expressible with simple expressions

• So far, we have considered only simple data

– inputs and outputs were just integers

• We need general data as well...

– these will also be described recursively

– will allow us to describe data of real programs

e.g., strings, lists, trees, expressions, propositions, …

• We’ll start simple: sets of numbers



Recursive Definitions of Sets (Data)

Natural numbers

Basis:  0 ∈ S

Recursive: If x ∈ S, then x+1 ∈ S

Even numbers

Basis:  0 ∈ S

Recursive: If x ∈ S, then x+2 ∈ S



Recursive Definition of Sets

Recursive definition of set S

• Basis Step: 0 ∈ S

• Recursive Step: If x ∈ S, then x + 2 ∈ S

• Exclusion Rule: Every element in S follows from 

the basis step and a finite number of recursive 

steps.

We need the exclusion rule because otherwise 

S=ℕ would satisfy the other two parts.  However, 

we won’t always write it down on these slides.



Recursive Definitions of Sets

Powers of 3:

Basis: 1 ∈ S

Recursive: If x ∈ S, then 3x ∈ S.

Natural numbers

Basis:  0 ∈ S

Recursive: If x ∈ S, then x+1 ∈ S

Even numbers

Basis:  0 ∈ S

Recursive: If x ∈ S, then x+2 ∈ S

Basis:  (0, 0) ∈ S, (1, 1) ∈ S

Recursive: If (n-1, x) ∈ S and (n, y) ∈ S,

then (n+1, x + y) ∈ S.

?



Recursive Definitions of Sets

Powers of 3:

Basis: 1 ∈ S

Recursive: If x ∈ S, then 3x ∈ S.

Natural numbers

Basis:  0 ∈ S

Recursive: If x ∈ S, then x+1 ∈ S

Even numbers

Basis:  0 ∈ S

Recursive: If x ∈ S, then x+2 ∈ S

“Indexed”

Fibonacci numbers

{(n,fn): n ∈ ℕ }

Basis:  (0, 0) ∈ S, (1, 1) ∈ S

Recursive: If (n-1, x) ∈ S and (n, y) ∈ S,

then (n+1, x + y) ∈ S.



Last time: Recursive definitions of functions 

• Before, we considered only simple data

– inputs and outputs were just integers

• Proved facts about those functions with induction

– n! ≤ nn

– fn < 2n and fn ≥ 2n/2-1

• How do we prove facts about functions that work 

with more complex (recursively defined) data?
– we need a more sophisticated form of induction



Structural Induction

How to prove ∀ 4 ∈ 5, �(4) is true:

Base Case: Show that �(6) is true for all specific 
elements 6 of 5 mentioned in the Basis step

Inductive Hypothesis:  Assume that � is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that �(7) holds for each of the 
new elements 7 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀ 4 ∈ 5, �(4) 



Basis:  (0, 0) ∈ S, (1, 1) ∈ S

Recursive:  If (n-1, x) ∈ S and (n, y) ∈ S,

then (n+1, x + y) ∈ S.

How to prove ∀ 4 ∈ 5, �(4) is true:

Base Case: Show that �(6) is true for all specific 
elements 6 of 5 mentioned in the Basis step

Inductive Hypothesis:  Assume that � is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that �(7) holds for each of the 
new elements 7 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀ 4 ∈ 5, �(4) 

Structural Induction cccc



Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary 
induction:

Define 8(�) to be “for all 4 ∈ 5 that can be 
constructed in at most
� recursive steps, �(4) is true.”

Ordinary induction is a special case of 
structural induction:

Recursive definition of ℕ

Basis: 0 ∈ ℕ

Recursive step:  If � ∈ ℕ then � + 1 ∈ ℕ



Using Structural Induction

• Let 5 be given by…

– Basis:   6 � 5;   15 ∈ 5

– Recursive:  if 4, ; ∈ 5 then 4 + ; ∈ 5.

Claim:  Every element of 5 is divisible by 3.



Claim:  Every element of 5 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈ S by  

structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈ S

4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and

since P(y) is true, 3|y and so y=3n for some integer n.      

Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈ S.

Basis:   6 � 5;   15 ∈ 5

Recursive:  if 4, ; ∈ 5 then 4 + ; ∈ 5



Claim:  Every element of 5 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈ S by  

structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈ S

4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and

since P(y) is true, 3|y and so y=3n for some integer n.      

Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈ S.

Basis:   6 � 5;   15 ∈ 5

Recursive:  if 4, ; ∈ 5 then 4 + ; ∈ 5



Claim:  Every element of 5 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈ S by  

structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈ S

4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and

since P(y) is true, 3|y and so y=3n for some integer n.      

Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈ S.

Basis:   6 � 5;   15 ∈ 5

Recursive:  if 4, ; ∈ 5 then 4 + ; ∈ 5



Claim:  Every element of 5 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈ S by  

structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈ S

4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and

since P(y) is true, 3|y and so y=3n for some integer n.      

Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈ S.

Basis:   6 � 5;   15 ∈ 5

Recursive:  if 4, ; ∈ 5 then 4 + ; ∈ 5



More Structural Induction

• Let > be given by…

– Basis:   12 � >;   15 � >

– Recursive:  if 4 ∈ >, then 4 + 6 ∈ > and 4 + 15 ∈ >

• Two base cases and two recursive cases, one 

existing element.

Claim: > ⊆ 5 ; i.e. every element of > is also in 5.

Proof needs structural induction using definition 

of > since statement is of the form ∀4 ∈ >. �(4)


