CSE 311: Foundations of Computing

Lecture 17: Structural Induction

What's that Doctor McCluckles? Making them ovoid
would increase structural integrity and enable a more
comfortable delivery? He's right again Professor!

Midterm

Midterm in class next Wednesday Seetun r
leepure |Yf

Covers material up to ordinary induction (HW5)

Closed book, closed notes % Néru\ (&

— will provide reference sheets —

No calculators
— arithmetic is intended to be straightforwar
— (only a small point deduction anyway) 1490

%OW‘ M Aok 7y

—

Midterm

* 5 problems covering:
— Propositional Logic
Including circuits / Boolean algebra / normal forms
— Predicate Logic/English Translation
— Modular arithmetic
— Set theory
— Induction

10 minutes per problem
— write quickly, don’t get stuck on one problem
— focus on the overall structure of the solution

CSE 311: Foundations of Computing

Lecture 17: Structural Induction

the
tujff

(oo

Last time: Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)

Last time: Using Structural Induction

* Let S be given by... e Iue
—Basis: 6 S5; 15€ S
— Recursive: if x,y € S thenx +y € S.

(‘(‘4°M‘1 daiy; Syt b T ot

Claim: Every element of S is divisible by 3.

Last time: Every element of S is divisible by 3.

Y= 0wtk })
1. Let P(x) be@ We prove that P(x) is true for all x € S by

structural induction.
bbb

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some Erbit ry x,y €S

4. Inductive Step: |Goal: Show P(x-

Since P(x) is true, 3|x and so x=8m forsome integer
since P(y) is true, 3|y and so y~3n for so
Therefore x+y=3m+3n=3(m+n) and thus 3 | (x+

Hence P(x+y) is true.
5. Therefore by induction 3|x far all x € S.

,
<<

and

? \
ﬁ@&'{ﬁ&@fg Basié‘\g}e;; 15 € 8/ X/
\.\ Ntz 0 Recursive:“if x,y €S thenx + y € S

More Structural Induction A T

X
] et R be given by... @
— Basis: 1_2\6 R: ge R
Recursive: if x € R,thenx + 6 € Randx + 15 € R

—_—

 Two base cases and two recursive cases, one
existing element.

Claim: R € S;i.e. every elementof R is also in S.
/

Proof needs structural induction using definition

of R since statement is of the form Vx € R, P(x)
B (s |

Claim: Every elementof Risin S. (R € 5)

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € R by
structural induction.

2. Base Case: (12): 6 € Sso 6+6=12 € S by definition of S, so P(12)
(15): 15 € S, so P(15) is also true

3. Ind. Hyp: Suppose that P(x) is true for some arbitrary x € R

4. Inductive Step:| Goal: Show P(x+6) and P(x+15)
Since P(x) holds, we have x € S. Since 6 € S from the recursive
step of S, we get x + 6 €S, so P(x+6) is true, and since 15 € S
we get x + 15 € S, so P(x+15) is true.

5. Therefore P(x) (i.e., x €S) for all x € R by induction.

Basis: 6¢cS; 15€ S Sis: 12cR:; 15k

Recursive: if x,y € S, Recursive: if x € R,thenx + 6 € R
thenx+y €S and x + 15 €R

Recursive Definitions

* Recursively defined functions and sets are our
mathematical models of code and the data it uses
— recursively defined sets can be translated into Java
classes
— recursively defined functions can be translated into Java

functions
some (but not all) can be written more cleanly as loops

e Can now do proofs about CS-specific objects

-

~

\
———

—

Lists of Integers

 Basis: nil € List

* Recursive step:
if L € Listand a € Z,

then a:: L € List

Examples:
— nil h "L]
— 1 ::nil %+ ‘MI 1]
— 1::2::nil 2..;1%:.“4;’ 1, 2]
—1:2:3:nil 11, 2, 3]

5ie G ’ C’T,/\ 2]

Functions on Recursively Defined Sets

Assume that the recursive definition of S gives a
unique way to construct every element of S.

We can define the values of a function f on S
recursively as follows:

Basis: Define f(u) for all specific elements u of S
mentioned in the Basis step

Recursive Step: Define f(w) for each of the new
elements w constructed in terms of / applied to each
of the existing named elements mentioned in the

Recursive step

. . Basis: nil € List
Functions on Lists

Recursive step:

0:'; if LEListanda € Z
Length: “" thee List
len(nil) :=0
len(a:: L) :=len(L) + 1 for any L € List and a E@gf

Concatenation:

concat(nil, R) :=R for any R € List
concat(a:: L,R):=a: concat(L,R) foranylL, R € List and
any a € Z

. Basis» nil € List
Structural Induction 295 ,
| Recursive step:

if L € Listand a € Z,

How to prove V x € S, P(x) is trde: _
thena: L € List

Base Case: Sho P(u) is trpe for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holc of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)

Claim: len(concat(L, | R)) =len(L) + len(R) forall L, R € List

Let DL Ve Mcmda, %ﬁﬁ)ﬁcﬁw
VS

Length: Concatenation:

len(nil) :=0 concat(nil,R) :=R .
len(a::L):=len(L) +1 concatfa:: L R) :=a:: concat(L, R)

AN

] V de &
Claim: len(concat(L, R)) = len(L) + len(R) @ R € List
e c]
Let P(L) be “len(concat(L, R)) = len(L) + len(R) for allR € List " .
We prove P(L) forall L € List by structural induction.

@Nt Cae @(W\)
CMCO\{‘ (M'\\/ ;L

L\{S = \ov
T s e ﬁx) +HeoLB!
O -
Length: Concatenation:
len(nil) :=0 concat(nil, R) := R
Lgll(aii_[,) :=len(L) +1 concat(a:: L, R) :=a:: concat(L, R)

Claim: len(concat(L, R)) = len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List" .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

Length: Concatenation:
len(nil) :=0 concat(nil,R) :=R

len(a::L):=len(L) +1 concat(a:: L, R) := a:: concat(L, R)

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R € List" .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,
.

len(concat(nilLR)) = len(R) def of concat

= 0 + len(R)
= len(nil) + len(R) def of len

Since R was arbitrary, P(nil) holds.

S—

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List" .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: me that P(L) is true for some arbitrary
L € List, i.e., Jen(concat(L, R)) =Ien(L) + len(R) for all R € List./
ﬂ(&‘.t L) - (Al(a@g‘
v (i)

vt (P — Paal))

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List
—
Let P(L) be “len(concat(L, R)) = len(L) + len(R) for all R € List" .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: |Goal: Show that P(a :: L) is true "~

|€‘A, (C.MCM'(&-”L,@)_:fw Ca:i Ov&.d-(L,n_;)
= e (Crneatlbon)) A\

= e (L) HRIFY)
l&u(a— Q‘{\K e ZIZ;”{

Claim: len(concat(L, R)) = len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List" .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: [Goal: Show that P(a:: L) is true

Let R € List be arbitrary. Then,

Length: Concatenation:
len(nil) :=0 concat(nil, R) :=R

len(a:: L) :=len(L) +1 concat(a :: L, R) := a:: concat(L, R)

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List" .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: |Goal: Show that P(a :: L) is true

Let R € List be arbitrary. Then, we can calculate

len(concat(a:: L, R)) = len(a :: concat(L, R)) def of concat

=1+ len(concat(L, R)) def of len

-S> =1+Ilen(L) + len(R) IH
=len(a:: L) +len(R) def of len

I

Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List" .

We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.

Inductive Step:

Let R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a:: concat(L, R))
= 1 + len(concat(L, R))

Goal: Show that P(a :: L) is true

=1+ len(L) + len(R)
= len(a:: L) + len(R)

Since R was arbitrary, we have shown P(a :: L).

def of concat
def of len
IH

def of len

By induction, we have shown the claim holds for all L € List.

Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

Defining Functions on Rooted Binary Trees

e size(*):=1

. size(:

* height(¢):=0

Basis: * is arooted binary tree

Recursiv€ step:

Last time: Structural Induction

elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step@ove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)

Claim: For every rooted binary tree T, size(T) < 2"eightT 1.1

L ——

Claim: For every rooted binary tree T, size(T) < 2heightM+1 _1

1. Let P(T) be “size(T) < 2heisht(M+1-1”_ We prove P(T) for all rooted binary
trees T by structural induction.

size(({::= 1 height(*) =0
size T/\T) =1+ size(ry) +size(ry) || height (&, 5) =1+ maxtheight(Ty), height(T,)

Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1", We prove P(T) for all rooted binary
trees T by structural induction. l/

2. Base Case: size(®)=1, height(*)=0, and 2°*1-1=21-1=1 so P(e) is true.
—_—, — _ B -

Claim: For every rooted binary tree T, size(T) < 2heightM+1 _1

1. Let P(T) be “size(T) < 2heisht(M+1-1”_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2height(T)+1 _ 7 for k=1,2

4. Inductive Step: Goal: Prove P(?/\)

Claim: For every rooted binary tree T, size(T) < 2heightM+1 _1

1. Let P(T) be “size(T) < 2heisht(M+1-1”_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2height(T) +1 _ 1 for k=1,2

4. Inductive Step: Goal: Prove P(?/\).
size(Y)
ST ST
size(*) =1
size (T/\':) u= 1+ size(T,) + size(T,)

height(*) ::=0

height (11/\72) ::= 1 + max{height(T,), height(T,)} < 2height((\; J+1 _ 1

Claim: For every rooted binary tree T, size(T) < 2heightM+1 _1

1. Let P(T) be “size(T) < 2heieht(M+1-1"_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2height(T)+1 _ 1 for k=1,2

4. Inductive Step: Goal: Prove P(/\ .)
By def, S|ze(/\) =1+size(T)+SIZ€(T2)
"""""""" < 1+7height(T1)+1_1 47 height(Tg)+1_q
by IHfor T, and T,
< 2height(T1)+1+2height(T2)+1_1

< 2-max(2height(Ta)+1, pheight(Tz)+1)_1
< 2(2max(height(Ty),height(T2))+1)_1
< 2(2he|ght(...f:)) —1< 2he|ght(“<: H+1_1

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.

