CSE 311.: Foundations of Computing

Lecture 17: Structural Induction

What's that Doctor McCluckles? Making them ovoid
would increase structural integrity and enable a more
comfortable delivery? He's right again Professor!



Midterm

 Midterm in class next Wednesday

* Covers material up to ordinary induction (HWb)

Closed book, closed notes
— will provide reference sheets

No calculators
— arithmetic is intended to be straightforward
— (only a small point deduction anyway)



Midterm

* 5 problems covering:
— Propositional Logic
Including circuits / Boolean algebra / normal forms
— Predicate Logic/English Translation
— Modular arithmetic
— Set theory

— Induction

10 minutes per problem
— write quickly, don’t get stuck on one problem
— focus on the overall structure of the solution



CSE 311.: Foundations of Computing

Lecture 17: Structural Induction
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Last time: Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)



Last time: Using Structural Induction

* Let S be given by...
—Basis: 6 <S5; 15€ S
— Recursive: if x,y €S thenx +y € §.

Claim: Every element of S is divisible by 3.



Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x". We prove that P(x) is true for all x € S by
structural induction.

Basis: 6S5; 15€§
Recursive: if x,y € S thenx +y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6S5; 15€§
Recursive: if x,y € S thenx +y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y €S

4. Inductive Step: |Goal: Show P(x+y)

Basis: 6S5; 15€§
Recursive: if x,y € S thenx +y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x". We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) and P(y) are true

4. Inductive Step:

for some arbitrary x,y €S

Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.

5. Therefore by induction 3|x for all x € S.

Basis: 6S5; 15€§
Recursive: if x,y € S thenx +y €S




More Structural Induction

* Let R be given by...
—Basis: 12 R; 15 R
— Recursive: if x € R,thenx + 6 € Randx + 15 € R

 Two base cases and two recursive cases, one
existing element.

Claim: R € S;i.e. every element of R is also in S.

Proof needs structural induction using definition
of R since statement is of the form Vx € R. P(x)



Claim: Every elementof Risin S. (R € 5)

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € R by

structural induction.

2. Base Case: (12): 6 € Sso 6+6=12 € S by definition of S, so P(12)
(15): 15 € S, so P(15) is also true
3. Ind. Hyp: Suppose that P(x) is true for some arbitrary x € R

4. Inductive Step:| Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have x € S. Since 6 € S from the recursive
step of S, we get x + 6 €S, so P(x+6) is true, and since 15 € S
we get x + 15 € §, so P(x+15) is true.

5. Therefore P(x) (i.e., x € S) for all x € R by induction.

Basis: 6 S5; 15€ S
Recursive: if x,y € S,
thenx +y €S

Basis: 12 R; 15 R

Recursive: if x € R,thenx + 6 €ER
and x +15€R




Recursive Definitions

* Recursively defined functions and sets are our
mathematical models of code and the data it uses

— recursively defined sets can be translated into Java
classes

— recursively defined functions can be translated into Java
functions

some (but not all) can be written more cleanly as loops

 Can now do proofs about CS-specific objects



Lists of Integers

* Basis: nil € List

* Recursive step:
if L € List and a € Z,
then a:: L € List

Examples:
— nil ]
— 1 ::nil 1]
— 2::1:nil 2, 1]
— 3:2:1 il 3, 2, 1]




Functions on Recursively Defined Sets

Assume that the recursive definition of S gives a
unique way to construct every element of §.

We can define the values of a function f on S
recursively as follows:

Basis: Define f(u) for all specific elements u of §
mentioned in the Basis step

Recursive Step: Define f(w) for each of the new
elements w constructed in terms of / applied to each
of the existing named elements mentioned in the

Recursive step



Functions on Lists

Length:
len(nil) :=0

len(a::L):=len(L) +1

Concatenation:
concat(nil, R) :=R

concat(a:: L, R) :=a:: concat(L, R)

Basis: nil € List

Recursive step:
if L € Listand a € Z,

then a:: L € List

foranyLe Listanda e Z

for any R € List
for any L, R € List and

any a eZ




. Basis» nil € List
Structural Induction il
| Recursive step:

if L € Listand a € Z,

How to prove V x € S, P(x) is trde: _
thena:: L € List

Base Case: Sho P(u) is trye for all specific
elements u of S mentioned in thie Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) hol of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)



Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Length: Concatenation:
len(nil) :=0 concat(nil,R) :=R

len(a:: L) :=len(L) +1 concat(a :: L, R) := a :: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Length: Concatenation:
len(nil) :=0 concat(nil, R) :=R

len(a: L) :=len(L) +1 concat(a:: L, R) := a :: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

Length: Concatenation:
len(nil) :=0 concat(nil, R) :=R

len(a: L) :=len(L) +1 concat(a:: L, R) := a :: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

len(concat(nil, R)) = len(R) def of concat
=0 + len(R)
= len(nil) + len(R)  def of len

Since R was arbitrary, P(nil) holds.



Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Basis: nil € List

Recursive step:
if L € Listand a € Z,

then a:: L € List




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: |Goal: Show that P(a :: L) is true




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: |Goal: Show that P(a :: L) is true

Let R € List be arbitrary. Then,

Length: Concatenation:
len(nil) :=0 concat(nil, R) :=R

len(a: L) :=len(L) +1 concat(a :: L, R) := a :: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: |Goal: Show that P(a :: L) is true

Let R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a:: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
=len(a:: L) + len(R) def of len



Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for all R € List " .

We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) =0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.

Inductive Step:

Let R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a:: concat(L, R))
= 1 + len(concat(L, R))

Goal: Show that P(a :: L) is true

=1+ len(L) + len(R)
=len(a:: L) + len(R)

Since R was arbitrary, we have shown P(a :: L).

def of concat
def of len
IH

def of len

By induction, we have shown the claim holds for all L € List.



Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree



Defining Functions on Rooted Binary Trees

size(¢):=1

:= 1 + size(T,) + size(T,)

) := 1 + max{height(T,), height(T,)}



Claim: For every rooted binary tree T, size(T) < 2heightM+1_1




Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.

size() =1 height(*) =0

= 1 + size(T,) + size(T,) height ( T1 Tz ) ::= 1 + max{height(T,), height(T,)}

5
AL L T *

________________




Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.



Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightMJ+1 _ 1 for k=1,2

4. Inductive Step: Goal: Prove P( /\ ).

N

---------------




Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heehtMI+1 1 for k=1,2

4. Inductive Step: Goal: Prove P( /\ ).
size( Y )
FAGAERY
size(*) =1
size ( T1/\Tz ) u=1 + size(T,) + size(T,)

height(®) :=0

height (

‘n/\n ) := 1+ max{height(T,), height(T,)}| & 2height( ?/\T J+1 _ 1

............................




Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heehtMI+1 1 for k=1,2
4. Inductive Step: Goal: Prove P( /\ . ).

----------------

By def, S|ze( /\ ) 1+5|ze(T1)+5|ze(T2)

------------

by IH for T, and T,
— 2height(T)+14 7 height(Ta)+1_1
< 2-max(2height(T1)+1,Dheight(Ta}+1)_1
< 2(2max(height(Ty) height(T)}+1)—1
< z(zhe'ght(...ﬁ. N—1< zhelght(...ﬁ_ 11

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.



Strings

 An alphabet X is any finite set of characters

* The set 2* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000,001, ..  and *’

 2* js defined recursively by
— Basis: £ € X* (¢ is the empty string, i.e., “”)
— Recursive: ifw e 2*,a € 2,thenwa € 2*



Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:

e is a palindrome
any a € 2 is a palindrome

Recursive step:

If p is a palindrome,
then apa is a palindrome for every a € 2



Functions on Recursively Defined Sets (on *%)

Length:
len(e) :=0
len(wa) :=len(w) +1forw eX* aeX

Concatenation:
xegc:=xforx€X*
xewa:=(xew)laforxeX* aeX

Reversal:
eR:=¢
(wa)R:=aewRforweX*,aeX

Number of c’s in a string:
#(g) =0
# (wc) :=# (w)+1forweX”
# (wa) =#.(w)forweX*, a€eX, azc

separate cases for
CVSa#c



Basis: e € X*

Last time: Structural Induction ——¢2qive steps:

ifweX*anda e 2,

How to prove V x € S, P(x) istrue: | —then wa c s+

T

Base Case: S at P(u) is true for all spedific
elements u'of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some

arbitrary values of each of the existing nam
elements mentioned in the Recursive step

Inductive Step: Prove tha S for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)



Claim: len(xey) = len(x) + len(y) for all x,y €X”

Let P(y) be “len(xey) = len(x) + len(y) forall x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(€)=0. Since x was arbitrary, P(¢) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X%, i.e., len(xew) = len(x) + len(w) for all x



Claim: len(xey) = len(x) + len(y) for all x,y €X”

Let P(y) be “len(xey) = len(x) + len(y) for allx €| Does this look
We prove P(y) for all y € X* by structural indu familiar?

Base Case (y = €): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(€)=0. Since x was arbitrary, P(¢) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X* i.e., len(xew) = len(x) + len(w) for all x
Inductive Step: |Goal: Show that P(wa) is true for everya € X

Let a € X and x € X*. Then len(xewa) = len((x®*w)a) by def of e
= len(xew)+1 by def of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by def of len

Therefore, len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X*



