CSE 311: Foundations of Computing

Lecture 18: Strings and Regular Expressions

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE TO SEARCH

MUST HAVE ROLOWED)| | THROUGH 200 MB GF EMALLS LOOKING FOR
NEW SKILL T ConcoCT | |HER ON VACATION | mﬂm FORMATTED LIKE AN ADDRESS!
|

ELABORATE FANTRASY
SCENARICS WHERE (T ~— [T5 HOPELESS!
LETS ME SVE HE DAY, %
T KNOW REGULAR
EXPRESSIONS.

\WHENEVER T LEARN A

Last time: Rooted Binary Trees

e Basis: * |s arooted binary tree
* Recursive step:

Defining Functions on Rooted Binary Trees

size(¢):=1

:= 1 + size(T,) + size(T,)

..) := 1 + max{height(T,), height(T,)}

Claim: For every rooted binary tree T, size(T) < 2heightM+1 _1

1. Let P(T) be “size(T) < 2heisht(M+1-1”_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(¢)=1, height(¢)=0, and 20+1-1=21-1=1 so P(e) is true.

—

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2height(T)+1 _ 7 for k=1,2

4. Inductive Step: Goal: Prove P(?/\)

Claim: For every rooted binary tree T, size(T) < 2heightM+1 _1

1. Let P(T) be “size(T) < 2heisht(M+1-1”_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T, i.e., size(Ty) < 2height()+1 _ 1 for t¢1,2

4. Inductive Step: Goal: Prove P(.T/\)

..............

V‘M‘B(’Z‘“" 2‘"‘)) é /‘4,
£

- an)+ . —_—
- 7 len(Al-/F) :,2’ e (l\rwnkw‘)\'\/ ,2_u.,n(\'._|1|)_(‘-1

2o QI i O]

-
size(*) =1 -~

.............

height(*) ::=0

height (T/\T) ::= 1+ max{height(T,), height(T,)}| <& 2height({\)+1 1 \”
Lol g2 —. 1 — AEAAERY

Claim: For every rooted binary tree T, size(T) < 2heightM+1 _1

1. Let P(T) be “size(T) < 2heieht(M+1-1"_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2height(T)+1 _ 1 for k=1,2

4. Inductive Step: Goal: Prove P(/\ .)
By def, S|ze(/\) =1+size(T)+SIZ€(T2)
"""""""" < 1+7height(T1)+1_1 47 height(Tg)+1_q
by IHfor T, and T,
— 2height(T1)+1+2height(T2)+1_1

< 2-max(2height(Ta)+1, pheight(Tz)+1)_1
<2 (2max(height(Ty), height(T2)}+1)_1
< 2(2he|ght(...f:)) —1< 2he|ght(“<: H+1_1

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.

Strings

 An alphabet 2 is any finite set of characters
S°[\ ') AJCﬂ tgoc‘('

* The set X * of strings over the alphabet X~
— example {0,1}* is the set of blnary strmg

0, 1,00, 01, 10, 11, 000, 001, ... / ’“{;‘)

X * js defined recursively by
— Basis: ¢ € 2™ (¢ is the empty string, i.e., “”)
— Recursive: ifwe 2*, a e X, then wa € X*

Palindromes

g GroYorA
Palindromes are strings that are the same when \ (<ue|
read backwards and forwards ¢ , a R aef |des\

Basis:
¢ is a palindrome 7= fo\]
any a € X is a palindrome -
O
Recursive step: \o
: : OD\o\O
If p is a palindrome, S0 {0 Y00

then apa is a palindrome for every a € X

Functions on Recursively Defined Sets (on X%)

Length:
Ien(g_) =0
len(wa) := len(w) + 1 for w € Y* a€eX

—

Concatenation:
xec:=xforx€ X"
xewa:=(xew)aforxeX*, aeX

Reversal:
eR:.=¢
(walR:=aewRforwe X aeX

Number of ¢’s in a string: C ¢ 3,

#.(g):=0
* separate cases for
#(wc):=# (w)+1forweX C VS aZc

#(wa):=#(w)forweX*,aeX, azc

Claim: len(xey) = len(x) + len(y) for all x,y € X~

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € £” be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(€)=0. Since x was arbitrary, P(¢) holds.
——————

—_—

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X%, i.e., len(xew) = len(x) + len(w) for all x

Claim: len(xey) = len(x) + len(y) for all x,y € X~

UM .
Let P(y) be “len(x$y) = len(x) + len(y) for allx €| Does this look
We prove P(y) for all y € X* by structural indut familiar?

Base Case (y =¢€): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(€)=0. Since x was arbitrary, P(¢) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X" i.e., len(xew) = len(x) + len(w) for all x
Inductive Step: [Goal: Show that P(wa)ﬁs true for every a € X \

Leta € X and x € X7. Then len(xewa) = len((xew)a by def of e
W @) 1 by def of len
= len(xJ+len(w)+1 by LH.
= len(x)+len(wa) by def of len

e —

Therefore, len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X~

Theoretical Computer Science

Languages: Sets of Strings

* Subsets of strings are called languages

 Examples:
— ¥" = All strings over alphabet X
— Palindromes over X
— Binary strings that don’t have a O aftera 1

— Binary strings with an equal # of O’s and 1’s
— Legal variable names in Java/C/C++
— Syntactically correct Java/C/C++ programs

— Valid English sentences

Foreword on Intro to Theory C.S.

* Look at different ways of defining languages

 See which are more expressive than others
—i.e., which can define more languages

e Later: connect ways of defining languages to
different types of (restricted) computers

— computers capable of recognizing those languages
i.e., distinguishing strings in the language from not

 Consequence: computers that recognize more
expressive languages are more powerful

Regular Expressions

Regular expressions over X

 Basis:
€ is a regular expression (could also include &)
a is a regular expression foranya € X

* Recursive step:
If A and B are regular expressions, then so are:
AUB
N

AB
A*

Each Regular Expression is a “pattern”

£ matches only the empty string @
a “a matches only the one-character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of

—

strings (even 0) that A matches, one after

another (e U AU AA U AAA U ...)
M\ [Definition of the language]

matched by a regular expression

Examples wyt e * bady lofes)

001*
— ?OC)/OC‘IOOHIOOH\)-—')
O*1*

51 oo || AUl

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

(0U1)0(0U1)0
m— o

soe , GFed, (0°°,0010}
> 0o o= 7T
(0*1%)*

&U V&(J/L L‘""/ ﬁ“jﬂ

Examples

Oul)oOoulo

{0000, 0010, 1000, 1010}

(O*1*)*

All binary strings

Examples

* All binary strings that contain 0110

(oo O 1o (ou1)*

Examples

* All binary strings that contain 0110

(Ou 1)*0110(0uU 1)*

Examples % I_Lo-

* All binary strings that contain 0110

T

(Ou 1)*0110(0uU 1)*

 All binary strings that begin with a string of doubled
characters (00 or 1_:1_.) followed by QlOiO or 10001

(vovnY (o100 leo@)
—

—

Examples

* All binary strings that contain 0110

(Ou 1)*0110(0uU 1)*

* All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

(00U 11)* (01010 U 10001) (O L 1)*

Regular Expressions in Practice

 Used to define the tokens of a programming language
— legal variable names, keywords, etc.

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

* We can use regular expressions in programs to
process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");

boolean b = m.matches();
[01] aOoral ~startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus

any single character

ab a followed by b (AB)
(a|lb) aorb (A U B)
a? zero or one of a (AU E€)
a* zero or more of a A*

a+ one or more of a AA*

* eg AI\=-+1?2[0-91*(\.]|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Examples

e All binary strings that have an even # of 1’s

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

* All binary strings that don’t contain 101

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

* All binary strings that don’t contain 101

e.g., 0* (1 u 000*)* O*

at least two Os between 1s

Limitations of Regular Expressions

 Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O's and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

Context-Free Grammars

* A Context-Free Grammar (CFQG) is given by a finite
set of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written
A—-wy | wy || w,

where each w;, is a string of variables and terminals
- thatis, w, € (VU X)*

How CFGs generate strings

 Begin with start symbol S

e |If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

—A->w | wy || w
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in
this manner (after a finite number of steps)

Example Context-Free Grammars

Example: S—>080|1S1]0]1]|¢

Example Context-Free Grammars

Example: S—>080|1S1]0]1]|¢

The set of all binary palindromes

Example Context-Free Grammars

Example: S—>080|1S1]0]1]|¢

The set of all binary palindromes

Example: S—>0S5|S1]|¢

Example Context-Free Grammars

Example: S—>080|1S1]0]1]|¢

The set of all binary palindromes

Example: S—>0S5|S1]|¢

0*1*

