CSE 311.: Foundations of Computing

Lecture 18: Strings and Regular Expressions

OH NO! THE KILLER || BUT TD FIND THEM WED HAVE T0O SEARCH
WHENEVER T LEARN A | | MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEW SKILL T CoNCoCT | | HER ON VACATION ! sm:rmr)s FORMATTED LIKE AN ADDRESS!

S O .
o || (R
il S
<1 K
i ol (8

Last time: Rooted Binary Trees

* Basis: * |s arooted binary tree
* Recursive step:

Defining Functions on Rooted Binary Trees

size(¢):=1

:= 1 + size(T,) + size(T,)

) := 1 + max{height(T,), height(T,)}

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightMJ+1 _ 1 for k=1,2

4. Inductive Step: Goal: Prove P(/\).

N

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heehtMI+1 1 for k=1,2

4. Inductive Step: Goal: Prove P(/\).
size(Y)
FAGAERY
size(*) =1
size (T1/\Tz) u=1 + size(T,) + size(T,)

height(®) :=0

height (

‘n/\n) := 1+ max{height(T,), height(T,)}| & 2height(?/\T J+1 _ 1

............................

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heehtMI+1 1 for k=1,2
4. Inductive Step: Goal: Prove P(/\ .).

By def, S|ze(/\) 1+5|ze(T1)+5|ze(T2)

by IH forT,; and T,
— 2height(T1)+1+2height(T2)+1_1
< 2-max(2height(Ty)+1,Dheight(Tg)+1)_1
= 2 (2max(height(Ty) height(T2))+1) 1
_ 2(2he|ght(mﬁ_.)—1-= zhelght(...c.. H1-1

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.

Strings

 An alphabet X is any finite set of characters

* The set 2* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000,001, .. and *’

 2* js defined recursively by
— Basis: £ € X* (¢ is the empty string, i.e., “”)
— Recursive: ifw e 2*,a € 2,thenwa € 2*

Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:

e is a palindrome
any a € 2 is a palindrome

Recursive step:

If p is a palindrome,
then apa is a palindrome for every a € 2

Functions on Recursively Defined Sets (on *%)

Length:
len(e) :=0
len(wa) :=len(w) +1forw eX* aeX

Concatenation:
xegc:=xforx€X*
xewa:=(xew)laforxeX* aeX

Reversal:
eR:=¢
(wa)R:=aewRforweX*,aeX

Number of c’s in a string:
#(g) =0
(wc) :=# (w)+1forweX”
(wa) =#.(w)forweX*, a€eX, azc

separate cases for
CVSa#c

Claim: len(xey) = len(x) + len(y) for all x,y €X”

Let P(y) be “len(xey) = len(x) + len(y) forall x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(€)=0. Since x was arbitrary, P(¢) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X%, i.e., len(xew) = len(x) + len(w) for all x

Claim: len(xey) = len(x) + len(y) for all x,y €X”

Let P(y) be “len(xey) = len(x) + len(y) for allx €| Does this look
We prove P(y) for all y € X* by structural indu familiar?

Base Case (y = €): Let x € X* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(€)=0. Since x was arbitrary, P(¢) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X* i.e., len(xew) = len(x) + len(w) for all x
Inductive Step: |Goal: Show that P(wa) is true for everya € X

Let a € X and x € X*. Then len(xewa) = len((x®*w)a) by def of e
= len(xew)+1 by def of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by def of len

Therefore, len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X*

Theoretical Computer Science

Languages: Sets of Strings

* Subsets of strings are called languages

* Examples:
— >" = All strings over alphabet X
— Palindromes over X~
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O’'s and 1's
— Legal variable names in Java/C/C++
— Syntactically correct Java/C/C++ programs
— Valid English sentences

Foreword on Intro to Theory C.S.

* Look at different ways of defining languages

 See which are more expressive than others
— i.e., which can define more languages

e Later: connect ways of defining languages to
different types of (restricted) computers

— computers capable of recognizing those languages
I.e., distinguishing strings in the language from not

 Consequence: computers that recognize more
expressive languages are more powerful

Regular Expressions

Regular expressions over X

* Basis:
€ is a regular expression (could also include @)
a is a regular expression forany a € X

* Recursive step:
If A and B are regular expressions, then so are:
AUB
AB
A*

Each Regular Expression is a “pattern”

€ matches only the empty string
a matches only the one-character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another (e U AU AA U AAA U ...)

Definition of the language
matched by a regular expression

Examples

001*

O*1*

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

Ooui1l)00ul0

(0*1*)*

Examples

Ooui1l)00ul0

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings

Examples

* All binary strings that contain 0110

Examples

* All binary strings that contain 0110

(OuU 1)*0110 (0 1)*

Examples

* All binary strings that contain 0110

(OuU 1)*0110 (0 1)*

* All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

Examples

* All binary strings that contain 0110

(OuU 1)*0110 (0 1)*

* All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

(00U 11)* (01010 U 10001) (O L 1)*

Regular Expressions in Practice

* Used to define the tokens of a programming language
— legal variable names, keywords, etc.

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

* We can use regular expressions in programs to
process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");

boolean b = m.matches();
[01] aOoral “startofstring $ end ofstring

[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(a|lb) aorb (A U B)
a? zero or one of a (AU Eg)
ax zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+]1?2[0-91*(\.|\,)?[0-9]+%
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Examples

* All binary strings that have an even # of 1’s

Examples

* All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

Examples

* All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

* All binary strings that don’t contain 101

Examples

* All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

* All binary strings that don’t contain 101

e.g., 0* (1uv 000*)* O*

at least two Os between 1s

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like

— Palindromes
— Strings with equal number of O's and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— efc.

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite
set of substitution rules involving
— A finite set V of variables that can be replaced
— Alphabet 2 of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written
A—>wy | wy |- | wyg

where each w; is a string of variables and terminals
- thatis, w, € (VU X)”

How CFGs generate strings

* Begin with start symbol S

* |If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

— Ao wy | wy || wy
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in
this manner (after a finite number of steps)

Example Context-Free Grammars

Example: S—H>080|151]0]|1]c¢

Example Context-Free Grammars

Example: S—H>080|151]0]|1]c¢

The set of all binary palindromes

Example Context-Free Grammars

Example: S—H>080|151]0]|1]c¢

The set of all binary palindromes

Example: S—->0S|S81]¢

Example Context-Free Grammars

Example: S—H>080|151]0]|1]c¢

The set of all binary palindromes

Example: S—->0S|S81]¢

0*1*

