CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

10™ ANNUAL g
Sm::-oﬁlm GRAMMAR!

)
oo | o | o
&; ﬁ % > e

for i

[Audience looks around]
“What is going on? There must be some context we’re missing”,

— M Mo Fwm
Rew WW§CS9M Wed
QQA Sh»/’fhj (4.%90 Jeor $ ZQM n C (el

Last class: Languages: Sets of Strings

* Subsets of strings are called languages

 Examples:
— ¥" = All strings over alphabet X
— Palindromes over X
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O’s and 1’s
__—— Legal variable names in Java/C/C++
N Syntactically correct Java/C/C++ programs

/ Valid English sentences

Last class: Regular Expressions

Regular expressions over X

 Basis:
€ is a regular expression (could also include &)
a is a regular expression foranya € X

* Recursive step:
If A and B are regular expressions then so are:
AUB
AB
A*

Last class: Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after

another
[Yields a language = the set of strings]

matched by the regular expression

Last class: Examples

Regular Expression

Language

001*

{00, 001, 0011, 00111, ...}

O*1* {Binary strings with any number of Os
followed by any humber of 1s}

(Oul)oO0ulo {0000, 1000, 0010, 1010}

(0*1*)* {All binary strings}={0,1}*

(Ou 1)* {All binary strings}={0,1}*

(Ou 1)* 0110 (0 U 1)* | {All binary strings containing substring

V\/

Regular Expressions in Practice

 Used to define the tokens of a programming language
— legal variable names, keywords, etc.

e Usedin g@g,,a program that does pattern matching
searches in UNIX/LINUX

* We can use regular expressions in programs to
process strings! D

fer

—

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");

e,

boolean b = m.matches();
[01] a OMl ~ start of string $ end of string
[0-9] anysingledigit \. period \, comma \- minus

any single character c~ 4 la _ —
ab a followed by b (AB)
(a|lb) aorb (A U B)
a? zero or one of a (éu/e),
a* zero or more of a A*
a+ one or more of a AA*

* eg AI\-+1?2[0-91*(\.]|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Examples

e All binary strings that have an even # of 1’s

0wy (¢F 101 8)T A=
\/(D)& (| ¥ ")* &(Md‘
V/&EU(WD* -
s (ox Ve)0t X
J A

Vg (004"

—

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*
. A,I7I binar% strings that don’t contain 101
ol ()
\\O (OO Wﬁw
[of (O*M, \
49@ 2 (\ M &)
| O

((S

E))XO’é

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

e All binary strings that dgjr’t contain 101

e.g., 0* (1 u 000%*)* O*

at least two Os between 1s
—— _

Limitations of Regular Expressions

 Not all languages can be specified by regular
expressions

 Even some easy things like

— Palindromes 4’—

— Strings with equal humber of O's and 1’'s ~—

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

Context-Free/ Grammars

<

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— Alphabet X of terminal symbols that can’t be replaced
— Afinite set V of variables that can be replaced

— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A-wy | wy || w

where each w; is a string of variables and terminals
—thatisw, € (VU LX)

How CFGs generate strings

* Begin with “S”

* If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A

—A->w, | w, || w
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner after a finite number of steps

Example Context-Free Grammars

Example: S—>0S|S1] €

A, PN ‘4 0}.
C=2 0{ =005 o0es OF 1%
=) 001
=) 000

) Oooo@x
_;?rmﬁii

Example Context-Free Grammars

Example: S—>0S|S1]|¢

O*1*

Example Context-Free Grammars

Example: S—>0S|S1]|¢

O*1*
J L/
Example: S—0S0[1s1]0|1]¢e

[{)&““"1 \VO\‘MM

Example Context-Free Grammars

Example: S—>0S|S1]|¢

O*1*

Example: S—>0S0|1S1|0]|1]¢

The set of all binary palindromes

Example Context-Free Grammars

Grammar for {0"1":n > 0} %

(i.e., matching Q_*.;L* but with same number of O’s and 1's)

£, 0\, 00\l o001} y At
[7 y)

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching O*1* but with same number of O’s and 1’s)

S—0S1]¢

= = 00511081l
5> 05170031127

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching O*1* but with same number of O’s and 1’s)

S—>0S1|¢

N

Grammar for {0"1°™":n > 0} Ol
00111

C>ostle

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching O*1* but with same number of O’s and 1’s)

S—0S1]¢

Grammar for {0"1™:n > 0}

S —> 0811 | ¢

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching O*1* but with same number of O’s and 1’s)

S—>0S81]|e¢
nqn+1 Vli” 10:
Grammar for {0717 /7°0:n = 0} 59\9—/47,&7
S AlO

- 0A1 2

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching O*1* but with same number of O’s and 1’s)

S—0S1]¢

Grammar for {0"1"*10: n > 0}

S—>A10
A — 0Al | €

Example Context-Free Grammars

Example: S—>)|SS]|e

T

Example Context-Free Grammars

Example: S—>(S)]|SS | ¢

The set of all strings of matched parentheses

