
CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

[Audience looks around]

“What is going on? There must be some context we’re missing”

Last class: Languages: Sets of Strings

• Subsets of strings are called languages

• Examples:

– Σ* = All strings over alphabet Σ

– Palindromes over Σ

– Binary strings that don’t have a 0 after a 1

– Binary strings with an equal # of 0’s and 1’s

– Legal variable names in Java/C/C++

– Syntactically correct Java/C/C++ programs

– Valid English sentences

Last class: Regular Expressions

Regular expressions over Σ

• Basis:

ε is a regular expression (could also include ∅)

a is a regular expression for any a ∈ Σ

• Recursive step:

If A and B are regular expressions then so are:

A ∪ B

AB

A*

ε matches the empty string

a matches the one character string a

A ∪ B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Yields a language = the set of strings

matched by the regular expression

Last class: Regular Expression is a “pattern”

Last class: Examples

Regular Expression Language

001* {00, 001, 0011, 00111, …}

0*1* {Binary strings with any number of 0s

followed by any number of 1s}

(0 ∪ 1) 0 (0 ∪ 1) 0 {0000, 1000, 0010, 1010}

(0*1*)* {All binary strings}={0,1}*

(0 ∪ 1)* {All binary strings}={0,1}*

(0 ∪ 1)* 0110 (0 ∪ 1)* {All binary strings containing substring

0110}

Regular Expressions in Practice

• Used to define the tokens of a programming language

– legal variable names, keywords, etc.

• Used in grep, a program that does pattern matching

searches in UNIX/LINUX

• We can use regular expressions in programs to

process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string

[0-9] any single digit \. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A ∪ B)

a? zero or one of a (A ∪ ε)

a* zero or more of a A*

a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

Examples

• All binary strings that have an even # of 1’s

Examples

• All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g., 0* (10*10*)*

Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g., 0* (10*10*)*

e.g., 0* (1 ∪ 000*)* 0*

at least two 0s between 1s

Limitations of Regular Expressions

• Not all languages can be specified by regular

expressions

• Even some easy things like

– Palindromes

– Strings with equal number of 0’s and 1’s

• But also more complicated structures in

programming languages

– Matched parentheses

– Properly formed arithmetic expressions

– etc.

Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set

of substitution rules involving

– Alphabet Σ of terminal symbols that can’t be replaced

– A finite set V of variables that can be replaced

– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as

A → w1 | w2 | ⋯ | wk

where each wi is a string of variables and terminals

– that is wi ∈ (V ∪ Σ)*

How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A

– A → w1 | w2 | ⋯ | wk

– Write this as xAy ⇒ xwy

– Repeat until no variables left

• The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner after a finite number of steps

Example Context-Free Grammars

Example: S → 0S | S1 | ε

Example Context-Free Grammars

Example: S → 0S | S1 | ε

0*1*

Example Context-Free Grammars

Example: S → 0S | S1 | ε

Example: S → 0S0 | 1S1 | 0 | 1 | ε

0*1*

Example Context-Free Grammars

Example: S → 0S | S1 | ε

Example: S → 0S0 | 1S1 | 0 | 1 | ε

The set of all binary palindromes

0*1*

Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

S → 0S1 | ε

Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0	1�	: � ≥ 0

S → 0S1 | ε

Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0	1�	: � ≥ 0

S → 0S1 | ε

S → 0S11 | ε

Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0	1	��0: � ≥ 0

S → 0S1 | ε

Example Context-Free Grammars

Grammar for 0	1	: � ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0	1	��0: � ≥ 0

S → 0S1 | ε

S → A10

A → 0A1 | ε

Example Context-Free Grammars

Example: S → (S) | SS | ε

Example Context-Free Grammars

Example: S → (S) | SS | ε

The set of all strings of matched parentheses

