CSE 311: Foundations of Computing

Lecture 19: Context-Free Grammars

s (;a?f:»k\ B
S GIRE

[Audience looks around]
“What is going on? There must be some context we’re missing”

Last class: Languages: Sets of Strings

 Subsets of strings are called languages

 Examples:
— ¥" = All strings over alphabet X
— Palindromes over X
— Binary strings that don’'t have a O aftera 1
— Binary strings with an equal # of O’s and 1’s
— Legal variable names in Java/C/C++
— Syntactically correct Java/C/C++ programs
— Valid English sentences

Last class: Regular Expressions

Regular expressions over X

 Basis:
€ is a regular expression (could also include &)
a is a regular expression foranya € X

* Recursive step:
If A and B are regular expressions then so are:
AUB
AB
A*

Last class: Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after

another
[Yields a language = the set of strings }

matched by the regular expression

Last class: Examples

Regular Expression Language

001* {00, 001, 0011, 00111, ...}

O*1* {Binary strings with any number of Os
followed by any humber of 1s}

(Oul)oO0ulo {0000, 1000, 0010, 1010}

(0*1*)* {All binary strings}={0,1}*

(Ou 1)* {All binary strings}={0,1}*

(Ou 1)* 0110 (0 U 1)* |{All binary strings containing substring
0110}

Regular Expressions in Practice

 Used to define the tokens of a programming language
— legal variable names, keywords, etc.

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

* We can use regular expressions in programs to
process strings!

Regular Expressions in Java

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");

boolean b = m.matches();
[01] aOoral “startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(alb) aorb (A U B)
a? zero or one of a (AU €)
a* zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+]1?2[0-91*(\.I\,)?[0-9]+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Examples

e All binary strings that have an even # of 1’s

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

* All binary strings that don’t contain 101

Examples

e All binary strings that have an even # of 1’s

e.g., 0* (10*10*)*

* All binary strings that don’t contain 101

e.g., 0* (1u 000%*)* O*

at least two Os between 1s

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O's and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— Alphabet X of terminal symbols that can’t be replaced
— A finite set V of variables that can be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A-wy| wy|-|w

where each w; is a string of variables and terminals
—thatisw, € (VU LX)

How CFGs generate strings

* Begin with “S”

* If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A

—A->w, | w, || w
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner after a finite number of steps

Example Context-Free Grammars

Example: S—>0S|S1]|¢

Example Context-Free Grammars

Example: S—>0S|S1]|¢

O*1*

Example Context-Free Grammars

Example: S—>0S|S1]|¢

O*1*

Example: S—>0S0|1S1|0]|1]¢

Example Context-Free Grammars

Example: S—>0S|S1]|¢

O*1*

Example: S—>0S0|1S1|0]|1]¢

The set of all binary palindromes

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’'s and 1’s)

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’'s and 1’s)

S—0S1]¢

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’'s and 1’s)

S—0S1]¢

Grammar for {0"1™:n > 0}

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’'s and 1’s)

S—0S1]¢

Grammar for {0"1™:n > 0}

S —> 0811 | ¢

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’'s and 1’s)

S—0S1]¢

Grammar for {0"1"10: n > 0}

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’'s and 1’s)

S—0S1]¢

Grammar for {0"1"10: n > 0}

S—>A10
A — 0Al | €

Example Context-Free Grammars

Example: S—>(9)]|SS | ¢

Example Context-Free Grammars

Example: S—>(9)]|SS | ¢

The set of all strings of matched parentheses

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS5|081]1S0 | ¢

An easy structural induction can show that everything
generated by S has an equal # of Os and 1s

Why does this generate all such strings?

Example Context-Free Grammars

Let x € {0,1}". Define f,.(k) to be the of Os minus the
number of 1s in the first k characters of x.

e

N

f. (k) = 0 when first k characters have #0s = #1s
—startsoutat O £, (0)=0
—ends at O f,(n) =0

E.g., for x=011100

Example Context-Free Grammars

Three possibilities for f,.(k) for k € {1,...,n — 1}

* f.(k) > 0forallsuchk / AN
S - 0S1

* f,(k) < O0forallsuchk \ /
S — 1S0

* f.(k) = 0forsome such k / >

S >SS

Simple Arithmetic Expressions

E—> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
1516|789

Generate (2*xx) t+vy

Simple Arithmetic Expressions

E—> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
15161789

Generate (2*xx) t+vy

E = E+E = (E)*+E = (E*E)+E = (2*E)+E = (2*X)+E = (2*Xx)+y

Parse Trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A > w

— The symbols of x label the leaves ordered left-to-right
S

/1IN

0 SO

/1N

1 S 1

|
1

S—0S0|1S1|0|1]|¢

Parse tree of 01110

Simple Arithmetic Expressions

E—> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
1516|789

Generate x+y*z in two ways that give two different
parse trees

Simple Arithmetic Expressions

E—> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
15161789

Generate x+y*z in ways that give two different parse trees

E E = E+E = x+E = x+E*E = x+y*E = x+y*z
E/ | \E (add x to the product of y and z)
+

BN E
X E % E /|\ E = E*XE = E+E*E = x+E*E
| | E % E = X+y*E = x+y*z
Y B /" I\ | (addxtoy, then multiply by z)
P
X Yy

building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F—factor |-identifier N -number
E > T|E+T
T — F | F+T
No longer
F %(E)lllN allows:
| > x|y|z E
N >0|1]2]3|4|5|6]|718]9 71\
E *x E
1IN |
||5 + ||5 Z
X Y

building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F-—factor |-identifier N - number
E > T|E+T
T — F | F+T
F > (E)|I|N S
| —>x]|y]|z 'll'
N >0|1]2|3|4|5]6|7]8]9 N
F o+ T
/aN]
+
X Vy Z

building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F—factor |-—identifier N - number
E > T|E+T
T — F | F+T
Still
F %(E)lllN allows:
| > x|y|z E
N —>0]1]2]3]4]5]6]71819 |\
E + E
| /1
Xx E * E
| |
\ Z

building precedence in simple arithmetic expressions

 E-—expression (start symbol)
e T—term F-—factor |-—identifier N- number
E > T|E+T
T — F| F«T
F - (E)|I|N
| —>x|y]|z

E
N ->0[|1]2|3]4]5]6]718]9 |\
E + T
/I
x F * T

V2

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate

e A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— sometimes necessary to use more than one

CFGs and regular expressions

Theorem: For any set of strings (language) A
described by a regular expression, there is a
CFG that recognizes A.

Proof idea:
P(A) is “A is recognized by some CFG”

Structural induction based on the recursive
definition of regular expressions...

Regular Expressions over X

* Basis:
— £ IS a regular expression
— a is a regular expression for any a € X~

* Recursive step:
— If A and B are regular expressions then so are:
AUB
AB
A*

CFGs are more general than REs

e CFGto match RE ¢

S—¢

e CFGto matchRE a (foranya €)

S—a

CFGs are more general than REs

Suppose CFG with start symbol S, matches RE A
CFG with start symbol Sg matches RE B

e CFGtomatchREAUB

S—S,|Sg + rules from original CFGs

e CFG to match RE AB

S—S,S; + rules from original CFGs

CFGs are more general than REs

Suppose CFG with start symbol S, matches RE A

e CFGtomatchREA® (=euUAUAAUAAAU ...)

S—>S,S5|¢ + rules from CFG with S,

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages

— Variables denoted by long names in angle
brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

::= used instead of —

BNF for C

statement:
((identifier | "case™ constant-expression | "default™) ":")*
(expression? ";" |
block |
"if" " (" expression ")" statement |
"if" "(" expression ")" statement "else™ statement |
"switch™ "(" expression ")" statement |
"while™ " (" expression ")" statement |
"do" statement "while™ " (" expression ")" ";" |
"for™ " (" expression? ":;" expression? ";" expression? ")" statemsnt |
"goto™ identifier ";" |
"continue™ ";" |
"break™ ";" |
"return" expression? ";"
)
block: "{" declaration* statement®* ™"}"
expression:
assignment-expression$
assignment-expression: |
unary-expression
| "e="] U= O MEEET) Ta=T |

Ifllll,l':'" | TI%:TI | Ifl_|_:'fl

| | p— | | ™™g T |

L L p—) | | L) | — T

)

}* conditional-expression

conditional-expression:
":" conditional-expression)?

logical-OR-expression ("?" expression

BNF for (Simple) English

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

