CSE 311.: Foundations of Computing

Lecture 20: CFGs, Relations

If y = 3, what is 6)?

Hmmm.. 63 ?

(/7

\ ”/%
.
"
* ?

Last class: Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— Alphabet X of terminal symbols that can’t be replaced
— A finite set V of variables that can be replaced

— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A>wy | wy |- | wy

where each w; is a string of variables and terminals
—thatisw, € (VU X)”

Last class: How CFGs generate strings

* Begin with “S”

* If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A

— Ao w | wy || wy
— Write thisas XAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner after a finite number of steps

Last class: Examples O = 0S =2 051 =7 00S|

=7007

Grammar Language

S—>0S|S1]|¢ O*1* [~

'S —» 0S0 | 1S1 | 0| 1 | € | The set of all binary palindromes

S—>0Sl|¢ {0"1™:n > 0}

S —0S11 | € {o"12":n > 0}

S — Al0 {0"1"*10:n > 0}

A —0Al | ¢

S—>(S)|SS|e¢ The set of all strings of matched
parentheses

LS - (%) \i &O U\ k\

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s

(not just O"1", also 0101, 0110, etc.)
—

S bstkisoké léb

| 0o |

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS|0S1]|1SO0 | ¢

A standard structural induction can show that everything
generated by S has an equal # of Os and 1s

Intuitively, why does this generate all such strings?

Example Context-Free Grammars

4

Let x € {0,1}". Define £ {k) to be the # of Os minus #
of 1s in the first k characters of x.

0s — # 1s so far

E.g., for x = 011100 f \/

f.(k) = 0 when first k characters have #0s = #1s
—starts out at O £, (0)=0
—ends at 0 f(n) =0

Example Context-Free Grammars

Three possibilities for f,.(k) fork € {1, ...,n — 1}

* fy(k) > 0forallsuch k ?g Q’
S - 0S1

+ f,(k) < 0 for all such k N //79
S - 1S0 o —

* f,(k) = 0 for some such k / 9
S >SS

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
151617189

Generate (2*xx) t+vy

F= Bt 2 E+y2 (@)
= (ExB N = (2% B) ty

) LZK) %j

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
151617189

Generate (2*xx) t+vy

E = E+E = (E)+E = (E*E)+E = (2*%E)+E = (2*X)+E = (2*Xx)+y

Parse Trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A > w

— The symbols of x label the leaves ordered left-to-right

= H50 =) 015 = 0l S
= N
0 SO

1 S 1

S—>0S0|1S1|0|1]¢

Parse tree of 01110 !

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
151617189

Generate x+yxz in two ways that give two different
parse trees

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
1516|7189

Generate x+yx*z in ways that give two different parse trees

E = E+E = x+E = Xx+E*E = x+y*E = x+y*z

E
N (add x to the produ nd z)
E + E //"‘Qm
)l(E/Jk\||§ /llf\ E = E*E = E+E*E = x+E*E
VA

| F % FE = X+y*E = xt+y*z

Yy /I’ N\ | (addxtoy, then multiply by 2)
E + E
;}\ Z
Y % | |
M / ! Q@kj\ w %

Y

building precedence in simple arithmetic expressions

 E-—expression (start symbol)

e T—term F-—factor |-identifier N - number
E > T|E+T

T —F|F«T X%\{X%

F > (E)|I|N

| > x|y|z E
N >0[1]2|3]4]|5]6]718]9 |\
|_5+T
Fo BT ST et | N

Fo* T
Y Z

building precedence in simple arithmetic expressions

 E-—expression (start symbol)

e T—term F—factor I|I-identifier N - number
E - T|ET No longer
T _)FlF*T 7()(\(?; allows:
F > (E)|I|N E
| > x|y]|z T
N >0|1|2|3|4|5|6|7]|8]|°9 y4 RN
S
C= T o Bxr = B 2N
: FeT Z

=2tret

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable

recursively defines the set of strings of terminals
that S can generate

* A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— sometimes necessary to use more than one

N O.(ArGue SUkS
-

(& (8 D R% O

CFGs and regular expressions

I\

Theorem: For all regular expressions(\ﬁ)there is a
CFG that generates precisely the strings A matches

Proof: Structural Induction

* Basis:
— g is a regular expression
— a is a regular expression forany a € X
* Recursive step:
— If A and B are regular expressions then so are:
AUB
AB
A*

CFGs can do everything REs can

e CFGto match RE ¢

S—o¢

* CFG to match RE a (for any a €)

S—>a

* Basis:
— g is a regular expression
— a is a regular expression forany a € X
* Recursive step:
— If A and B are regular expressions then so are:
AUB
AB
A*

CFGs can do everything REs can

Suppose CFG with start symbol S, matches RE A
ﬂ:\%i CFG with start symbol Sg matches RE B

(Then rename variables so no vars used in both)

. CFG to FAUB S?’«?SA

AddS — S, | Sg

+ rules from both CFGs é —/\; S@

* Basis:
° CFG to matCh RE AB S 5 — g is a regular expression
-~ — a is a regular expression forany a € X
Add S — SA SB 6 /7 P(* Recursive step:
— If A and B are regular expressions then so are:
+ rules from both CFGs —> < AUB

7 AB
A*

CFGs can do everything that REs can

\

(\
* CFG to match RE A" 5 — \Tﬁj(Og A
AddS —S,S | €
+ rules from CFG with S,

Sﬁé G =0 SpOpkS
550 ;’?SA’% s,

— g is a regular expression
— a is a regular expression forany a € X

* Recursive step:
— If A and B are regular expressions then so are
AUB
AB
A*

So far: Languages — REs and CFGs

Two new ways of defining languages
* Regular Expressions Ou1*0110 (0L 1)*

— easy to understand (declarative)

* Context-free Grammars S—>S8S]1081]|1S0 | ¢

— more expressive
— (a way of recursively-defining sets)

We will connect these to machines shortly.
But first, we nheed some new math terminology....

