
CSE 311: Foundations of Computing

Lecture 20:  CFGs, Relations



Last class: Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set 
of substitution rules involving
– Alphabet S of terminal symbols that can’t be replaced
– A finite set V of variables that can be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
A® w1 |  w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (VÈ S)*



Last class: How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A
– A ® w1 |  w2 | ⋯ | wk

– Write this as    xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG describes are all strings, 
containing no variables, that can be generated in this 
manner after a finite number of steps



Last class: Examples

Grammar Language

S ® 0S | S1 | e 0*1*

S ® 0S0 | 1S1 | 0 | 1 | e The set of all binary palindromes

S ® 0S1 | e 𝟎𝒏𝟏𝒏: 𝒏 ≥ 𝟎

S ® 0S11 | e 𝟎𝒏𝟏𝟐𝒏: 𝒏 ≥ 𝟎
S ® A10
A ® 0A1 | e

𝟎𝒏𝟏𝒏#𝟏𝟎: 𝒏 ≥ 𝟎

S ® (S) | SS | e The set of all strings of matched 
parentheses



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S ® SS | 0S1 | 1S0 | e

A standard structural induction can show that everything 
generated by S has an equal # of 0s and 1s

Intuitively, why does this generate all such strings?



Let 𝑥 ∈ {0,1}∗. Define 𝑓" 𝑘 to be the # of 0s minus # 
of 1s in the first 𝑘 characters of 𝑥.

E.g., for x = 011100

𝑓" 𝑘 = 0 when first 𝑘 characters have #0s = #1s
– starts out at 0 𝑓" 0 = 0
– ends at 0 𝑓" 𝑛 = 0

0     1     2     3     4     5     6

Example Context-Free Grammars

𝑓
# 0s − # 1s so far



Three possibilities for 𝑓"(𝑘) for 𝑘 ∈ {1,… , 𝑛 − 1}

• 𝑓" 𝑘 > 0 for all such 𝑘

• 𝑓" 𝑘 < 0 for all such 𝑘

• 𝑓" 𝑘 = 0 for some such 𝑘

Example Context-Free Grammars

0     1                         n-1 n

S ® 0S1

S ® 1S0

S ® SS

0     1                         n-1 n

0     1                         n-1 n

1

1



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y



Parse Trees 

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by 

symbols of w left-to-right  for some rule A ® w
– The symbols of x label the leaves ordered left-to-right

S ® 0S0 | 1S1 | 0 | 1 | e

S

0 0S

S1 1

1
Parse tree of 01110



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different 
parse trees



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in ways that give two different parse trees

E ⇒ E+E⇒ x+E⇒	x+E∗E⇒ x+y∗E⇒ x+y∗z
(add x to the product of y and z)

E ⇒ E∗E⇒	E+E∗E⇒ x+E∗E

⇒ x+y∗E⇒ x+y∗z
(add x to y, then multiply by z)

E

E

+

x

E*

z
y

E E

E

E +

x

E

*
zy

E E



building precedence in simple arithmetic expressions

• E – expression  (start symbol)
• T – term   F – factor   I – identifier  N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

T

+

x

T

*
zy

E

F



building precedence in simple arithmetic expressions

• E – expression  (start symbol)
• T – term   F – factor   I – identifier  N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

F T*

z

T

?

No longer
allows:



CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable 
recursively defines the set of strings of terminals 
that S can generate

• A CFG with more than one variable is a 
simultaneous recursive definition of the sets of 
strings generated by each of its variables
– sometimes necessary to use more than one



Theorem: For all regular expressions A  there is a 
CFG that generates precisely the strings A matches

CFGs and regular expressions

Proof:  Structural Induction



CFGs can do everything REs can

• CFG to match RE e

S ® e

• CFG to match RE a (for any a Î S)

S ® a



CFGs can do everything REs can

Suppose CFG with start symbol SA matches RE A 
CFG with start symbol SB matches RE B
(Then rename variables so no vars used in both)

• CFG to match RE A È B
Add S ® SA | SB
+ rules from both CFGs

• CFG to match RE AB
Add  S ® SA SB

+ rules from both CFGs



CFGs can do everything that REs can

• CFG to match RE A*
Add S ® SA S | e
+ rules from CFG with SA



So far: Languages — REs and CFGs

Two new ways of defining languages
• Regular Expressions (0 È 1)* 0110 (0 È 1)*
– easy to understand (declarative)

• Context-free Grammars S ® SS | 0S1 | 1S0 | e
– more expressive
– (a way of recursively-defining sets)

We will connect these to machines shortly.
But first, we need some new math terminology….


