
CSE 311: Foundations of Computing

Lecture 21: Directed Graphs, Finite State Machines

Last time: Relations

Let A and B be sets,

A binary relation from A to B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of A × A

Last time: Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b,a) ∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b,c)∈ R implies (a,c) ∈ R

Functions

A function � ∶ � → � (� as input and � as output) is a

special type of relation.

A function � from � to � is a relation from � to � such that:

for every � ∈ �, there is exactly one
 ∈ � with (�,
) ∈ �

i.e., for every input � ∈ �, there is one output
 ∈ �.

We denote this
 by �(�).

Function composition: If � ∶ � → � and � ∶ � → � then

their composition � ∘ �: � → � is defined by

� ∘ � � = �(� �)

Composing Relations

Let � be a relation from � to �.

Let � be a relation from � to �.

The composition of � and �, � ∘ � is the relation

from � to � defined by:

� ∘ � = {(a, c) : ∃ b such that (a, b) ∈ � and (b, c) ∈ �}

Intuitively, a pair is in the composition if there is a

“connection” from the first to the second.

The order of writing composition generalizes the function case

Examples

(a,b) ∈ Parent iff b is a parent of a

(a,b) ∈ Sister iff b is a sister of a

When is (x,y) ∈ Sister ∘ Parent?

When is (x,y) ∈ Parent ∘ Sister?

S ∘ R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

Powers of a Relation

�� = � ∘ �

= { �, � ∶ ∃� such that �, � ∈ � and �, � ∈ � }

�' = { �, � ∶ � ∈ �} “the equality relation on �”

�()* = �(∘ � for (≥ '

e.g., �* = �' ∘ � = �

�� = �* ∘ � = � ∘ �

Matrix Representation

Relation � on � = {�,, … , �.}

{ (1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) }

1 2 3 4

1 1 1 0 1

2 1 0 1 0

3 0 1 1 0

4 0 1 1 0

/01 =
1 if �5 , �6 ∈ �

0 if �5 , �6 ∉ �

Properties using matrix representation

reflexive

symmetric

anti-symmetric

1
1

1
1

1
1

1
1

1
1

0

0

1

1

0

0
0

1
1

0

Same when

rows & columns

swapped

No 1-1 pairs

Directed Graphs

G = (V, E) V – vertices
E – edges, ordered pairs of vertices

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Relational Composition using Digraphs

If � = �, � , �, 8 , 8, * and � = { *, � , �, * , *, 8 }

Compute � ∘ �

1

3

2 1

3

2

Relational Composition using Digraphs

If � = �, � , �, 8 , 8, * and � = { *, � , �, * , *, 8 }

Compute � ∘ �

1

3

2 1

3

2

Relational Composition using Digraphs

If � = �, � , �, 8 , 8, * and � = { *, � , �, * , *, 8 }

Compute � ∘ �

1

3

2 1

3

2

Relational Composition using Digraphs

If � = *, � , �, * , *, 8 and � = { *, � , �, * , *, 8 }

Compute � ∘ �

1

3

2 1

3

2

�, 9 ∈ : ∘ : = :; iff ∃
 (�,
 ∈ : ⋀ (
, 9) ∈ :)

iff ∃
 such that a, b, c is a path

Relational Composition using Digraphs

If � = *, � , �, * , *, 8 and � = { *, � , �, * , *, 8 }

Compute � ∘ �

1

3

2 1

3

2

Special case: � ∘ � is paths of length 2.

• � is paths of length 1

• �' is paths of length 0 (can’t go anywhere)

• �8 = �� ∘ � etc, so is �(paths of length n

Paths in Graphs and Relations

Def: The length of a path in a graph is the number of

edges in it (counting repetitions if edge used > once).

Elements of �' correspond to paths of length 0.

Elements of �* = � are paths of length 1.

Elements of �� are paths of length 2.

...

Paths in Graphs and Relations

Let � be a relation on a set �.

There is a path of length (from a to b in the digraph

for � if and only if (a,b) � �(

Def: The length of a path in a graph is the number of

edges in it (counting repetitions if edge used > once).

Connectivity In Graphs

Let � be a relation on a set �. The connectivity

relation �∗ consists of the pairs (�,
) such that there is

a path from � to
 in �.

Note: The Rosen book uses the wrong definition of this quantity.

What the Rosen defines (ignoring > = ') is usually called R+

Def: Two vertices in a graph are connected iff there is a

path between them.

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

at every node

or

or or

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the

relation transitive and reflexive.

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to

make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation � is the

connectivity relation �*

?-ary Relations

Let �*, ��, … , �(be sets. An (-ary relation on

these sets is a subset of �*×��× ⋯ × �(.

Relational Databases

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT

Back to Languages

Selecting strings using labeled graphs as “machines”

Finite State Machines

“Start

here”

“If I get this symbol, follow the

arrow…”
The circles are called “states”

We’re only in a single state at

any point in time…

The “double circle” means “the

input is good if it ends here”

Which strings does this machine say are OK?

Which strings does this machine say are OK?

The set of all binary

strings that end in 0

Finite State Machines

• States

• Transitions on input symbols

• Start state and final states

• The “language recognized” by the machine is the

set of strings that reach a final state from the start

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

