
CSE 311: Foundations of Computing

Lecture 24: NFAs and their relation to REs & DFAs

Recall: DFAs

• States

• Transitions on input symbols

• Start state and final states

• The “language recognized” by the machine is the

set of strings that reach a final state from the start

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Recall: DFAs

• Each machine designed for strings over some

fixed alphabet Σ.

• Must have a transition defined from each state for

every symbol in Σ.

s0 s2 s3s1

111

0,1

0

0

0

Last Time: Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled

by symbols (like DFA) but

– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1

– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an

NFA if and only if some valid execution of the

machine gets to an accept state

s0 s2 s3s1

111

0,10,1

Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever

there is a choice of what to do it magically guesses a

good one (if one exists)

• Outside observer: Is there a path labeled by x from

the start state to some accepting state?

• Parallel exploration: The NFA computation runs all

possible computations on x step-by-step at the same

time in parallel

Path Labels

Def: The label of path v0, v1, ..., vn is the

concatenation of the labels of the edges

(v0, v1), (v1, v2), …, (vn-1, vn)

Example: The label of path s0, s1, s2, s0, s0 is 1100

s0 s2 s3s1

111

0,1

0

0

0

Deterministic Finite Automata (DFA)

• Def: x is in the language recognized by an DFA if

and only if x labels a path from the start state to

some final state

• Path v0, v1, ..., vn with v0 = s0 and label x describes

a correct simulation of the DFA on input x

– i-th step must match the i-th character of x (there may

be options for which label to take between vertices).

s0 s2 s3s1

111

0,1

0

0

0

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled

by symbols (like DFA) but

– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1

– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an

NFA if and only if x labels some path from the

start state to an accepting state

s0 s2 s3s1

111

0,10,1

Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever

there is a choice of what to do it magically guesses a

good one (if one exists)

• Outside observer: Is there a path labeled by x from

the start state to some accepting state?

• Parallel exploration: The NFA computation runs all

possible computations on x step-by-step at the same

time in parallel

001 011

111

110

101010000

100

1

1
1 0

1

1

1

1

00
0

1

0

0

00

Compare with the smallest DFA

0,1

s3 s2 s1 s0

0,1 0,11

0,1

s3 s2 s1 s0

0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

s3

0 1 0 1 1 0 0

s3

s1

s3

s2

s3

s0

s1

s3

s0

s2

s3 s3

s0

X

s3

s1

s2

X

Summary of NFAs

• Generalization of DFAs

– drop two restrictions of DFAs

– every DFA is an NFA

• Seem to be more powerful

– designing is easier than with DFAs

• Seem related to regular expressions

The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs

Theorem: For any set of strings (language)

�, if there is a regular expression for � then

there is an NFA that recognizes �.

Proof idea: Structural induction based on

the recursive definition of regular

expressions...

NFAs and regular expressions

Regular Expressions over Σ

• Basis:

– ɛ is a regular expression

– a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

A ∪ B

AB

A*

• Case ɛ:

• Case a:

Base Case

• Case ɛ:

• Case a:

Base Case

• Case ɛ:

• Case a:

Base Case

a

Inductive Hypothesis

• Suppose that for some regular expressions

A and B there exist NFAs NA and NB such

that NA recognizes the language given by A

and NB recognizes the language given by B

NA NB

Inductive Step

Case A ∪ B:

NA

NB

Inductive Step

Case A ∪ B:

ɛ

ɛ

NA

NB

Inductive Step

Case AB:

NA NB

Inductive Step

Case AB:

ɛ

ɛ

NA NB

Inductive Step

Case A*

NA

Inductive Step

Case A*

ɛ

ɛ

ɛ

NA

Build an NFA for (01 ∪1)*0

Solution

(01 ∪1)*0

0
ɛ

ɛ

ɛ

ɛ

0

1

1

ɛ

ɛ

ɛ

ɛ

ɛ

The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs

NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that

recognizes exactly the same language

Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from

the start state to some final state?

• Perfect guesser: The NFA has input x and whenever

there is a choice of what to do it magically guesses a

good one (if one exists)

• Parallel exploration: The NFA computation runs all

possible computations on x step-by-step at the same

time in parallel

0,1

s3 s2 s1 s0

0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

s3 s3 s3 s3 s3 s3 s3

0 1 0 1 1 0 0

s2 s1 s0

s2 s1 s0

s2 s1 s0

s3

X

X

Conversion of NFAs to a DFAs

• Construction Idea:

– The DFA keeps track of ALL states reachable in

the NFA along a path labeled by the input so far

(Note: not all paths; all last states on those paths.)

– There will be one state in the DFA for each

subset of states of the NFA that can be reached

by some string

Conversion of NFAs to a DFAs

New start state for DFA

– The set of all states reachable from the start

state of the NFA using only edges labeled ɛ

a,b,e,f

f

e

ba
ɛ

ɛ

ɛ

NFA DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of

states of the NFA and each symbol a
– Add an edge labeled a to state corresponding to T, the

set of states of the NFA reached by

∙ starting from some state in S, then

∙ following one edge labeled by a, and

then following some number of edges labeled by ɛ

– T will be ∅ if no edges from S labeled a exist

f

e

b

ɛ

ɛ
c

d

g

ɛ
1

1

1

1

b,e,f c,d,e,g
1

Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of

the NFA

a,b,c,e

ce

b
a

NFA
DFA

Example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

DFA

Example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

Example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

Example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

∅

10

Example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

∅

1

0,1

0

Example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅

1

0,1

0

0

1

Example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅

1

0,1

0

0

1

1
0

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every

regular expression

– Build NFA

– Convert NFA to DFA using subset construction

– Minimize resulting DFA

Thus, we could now implement a RegExp library

– most RegExp libraries actually simulate the NFA

by constructing just the parts that are needed during the execution

– (even better: one can combine the two approaches:

apply DFA minimization lazily while simulating the NFA)

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

Is this ⊆ really “=” or “⊊”?

Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression

that defines the same language

Corollary: A language is recognized by a DFA (or NFA)

if and only if it has a regular expression

You need to know these facts

– the construction for the Theorem is included in the slides

after this, but you will not be tested on it

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=

Regular Languages

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=
Next time: Is this ⊆ really “=” or “⊊”?

Regular Languages

(Optional) proof that REs ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression

that defines the same language

Corollary: A language is recognized by a DFA (or NFA)

if and only if it has a regular expression

The construction for this Theorem is included in the following

slides for your information. You will only need to know the

statement of the theorem (and the corollary) not the proof.

We also give an example of the use of this general construction.

New Machinery: Generalized NFAs

• Like NFAs but allow

– parallel edges (between the same pair of states)

– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• Machine can follow an edge labeled by A by reading

a string of input characters in the language of A

– (if A is a or ɛ, this matches the original definition, but

we now allow REs built with recursive steps.)

New Machinery: Generalized NFAs

• Like NFAs but allow

– parallel edges (between the same pair of states)

– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• The label of a path is now the concatenation of the

regular expressions on those edges, making it a

regular expression

• Def: A string x is accepted by a generalized NFA iff

there is a path from start to final state labeled by a

regular expression whose language contains x

Construction Idea

Add new start state and final state

ɛ

ɛ

ɛ

A

Then delete the original states one by one,

adding edges to keep the same language,

until the graph looks like:

Starting from an NFA

A

Then delete the original states one by one,

adding edges to keep the same language,

until the graph looks like:

Final graph has only one path to the accepting state,

which is labeled by A,

so it accepts iff x is in the language of A

Thus, A is a regular expression with the same

language as the original NFA.

Only two simplification rules

• Rule 1: For any two states q1 and q2 with parallel

edges (possibly q1=q2), replace

If the machine would have used the edge labeled A

by consuming an input x in the language of A, it can

instead use the edge labeled A⋃B.

Furthermore, this new edge does not allow transitions

for any strings other than those that matched A or B.

q1
q2

A

B

by
A⋃B

q1
q2

Only two simplification rules

• Rule 2: Eliminate non-start/accepting state q3 by

creating direct edges that skip q3

for every pair of states q1, q2 (even if q1=q2)

Any path from q1 to q2 would have to match ABnC for

some n (the number of times the self loop was used),

so the machine can use the new edge instead. New

edge only allows strings that were allowed before.

A
B

C AB*C
q1 q3 q2 q1

q2

becomes

While the box contains some state s:

for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2

delete s (no longer needed)

merge all parallel edges by Rule 1

Construction Overview

Add new start state and final state

ɛ

ɛ

ɛ

Construction Overview

A

While the box contains some state s:

for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2

delete s (no longer needed)

merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same language

as the original NFA.

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

– Accept strings from {0,1,2}* where the digits

mod 3 sum of the digits is 0

t0 t2

t1

0

0

0

1 1

1

2

22

Splicing out a state t1

Create direct edges between neighbors of t1

(so that we can delete it afterward)

t0 t2

t1

0

0

1 1

1

2

22

0

s
ɛ

f

ɛ

Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 : 10*2

t0→t1→t2 : 10*1

t2→t1→t0 : 20*2

t2→t1→t2 : 20*1

0

s
ɛ

f

ɛ

Splicing out a state t1

Delete t1 now that it is redundant

t0 t2

0 ∪ 20*1
2 ∪ 10*1

t0→t1→t0 : 10*2

t0→t1→t2 : 10*1

t2→t1→t0 : 20*2

t2→t1→t2 : 20*1

0 ∪ 10*2

s
ɛ

f

ɛ

1 ∪ 20*2

Splicing out a state t1

Create direct edges between neighbors of t2

(so that we can delete it afterward)

t0 t2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ

1 ∪ 20*2

Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ

1 ∪ 20*2

R1: 0 ∪ 10*2

R2: 2 ∪ 10*1

R3: 1 ∪ 20*2

R4: 0 ∪ 20*1

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2

R2: 2 ∪ 10*1

R3: 1 ∪ 20*2

R4: 0 ∪ 20*1

Delete t2 now that it is redundant

t0R5

f

ɛ

s
ɛ

R5: R1 ∪ R2R4*R3

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2

R2: 2 ∪ 10*1

R3: 1 ∪ 20*2

R4: 0 ∪ 20*1

R5: R1 ∪ R2R4*R3

Create direct (s,f) edge so we can delete t0

t0R5

f

ɛ

s
ɛ

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2

R2: 2 ∪ 10*1

R3: 1 ∪ 20*2

R4: 0 ∪ 20*1

R5: R1 ∪ R2R4*R3

Regular expressions to add to edges

t0R5

f

ɛ

s
ɛ

t0→t1→t0: R5 *

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2

R2: 2 ∪ 10*1

R3: 1 ∪ 20*2

R4: 0 ∪ 20*1

R5: R1 ∪ R2R4*R3

Delete t0 now that it is redundant

R6

fs

R6: R5*

Splicing out state t2 (and then t0)

R1: 0 ∪ 10*2

R2: 2 ∪ 10*1

R3: 1 ∪ 20*2

R4: 0 ∪ 20*1

R5: R1 ∪ R2R4*R3

R6: R5*

Regular expressions to add to edges

R6

fs

Final regular expression: R6 =

(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*

