
CSE 311: Foundations of Computing

Lecture 27: Undecidability

Final exam Monday, Review session Sunday

• Monday at either 2:30-4:20 or 4:30-6:20

– JHN 102

– Must select your exam time by Saturday

No changes permitted after that

– Bring your UW ID

• Comprehensive: Full probs only on topics that were covered

in homework. May have small probs on other topics.

– May includes pre-midterm topics, e.g., formal proofs.

– Reference sheets will be included. Closed book. No notes.

• Review session: Sunday starting at 1 pm on Zoom

– Bring your questions !!

Last time: Countable sets

A set � is countable iff we can order the elements of � as

� = {��, ��, ��, … }

Countable sets:

ℕ - the natural numbers

ℤ - the integers

ℚ - the rationals

Σ∗- the strings over any finite Σ

The set of all Java programs

Shown

by

“dovetailing”

Last time: Not every set is countable

Theorem [Cantor]:

The set of real numbers between 0 and 1 is not countable.

Proof using “diagonalization”.

Last time: Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

So the list is incomplete, which is a contradiction.

Thus the real numbers between 0 and 1 are not countable: “uncountable”

For every � ≥ �:

�� ≠ � = �. �������������������� ⋯

because the numbers differ on

the �-th digit!

A note on this proof

• The set of rational numbers in [0,1) also have

decimal representations like this

– The only difference is that rational numbers always

have repeating decimals in their expansions 0.33333...

or .25000000...

• So why wouldn’t the same proof show that this set

of rational numbers is uncountable?

– Given any listing we could create the flipped diagonal

number � as before

– However, � would not have a repeating decimal

expansion and so wouldn’t be a rational #

It would not be a “missing” number, so no contradiction.

Last time:

The set of all functions � ∶ ℕ → {0, … , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...

f1 0. 5 0 0 0 0 0 0 0

f2 0. 3 3 3 3 3 3 3 3

f3 0. 1 4 2 8 5 7 1 4

f4 0. 1 4 1 5 9 2 6 5

f5 0. 1 2 1 2 2 1 2 2

f6 0. 2 5 0 0 0 0 0 0

f7 0. 7 1 8 2 8 1 8 2

f8 0. 6 1 8 0 3 3 9 4

...

1

5

5

5

5

5

1

5

For all �, we have # � ≠ $�(�). Therefore # ≠ $� for any � and the

list is incomplete! ⇒ $ $: ℕ → {0,1, … , 9}} is not countable

Supposed listing of all the functions:

Flipping rule:

If $� � = �, set # � = �

If $� � ≠ �, set # � = �

Last time: Uncomputable functions

We have seen that:

– The set of all (Java) programs is countable

– The set of all functions � ∶ ℕ → {0, … , 9} is not countable

So: There must be some function � ∶ ℕ → {0, … , 9} that is not

computable by any program!

Uncomputable functions

Interesting… maybe.

Can we come up with an explicit function that is

uncomputable?

A “Simple” Program

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3*n + 1)

}

}

What does this program do?

… on n=11?

… on n=10000000000000000001?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

A “Simple” Program

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3*n + 1)

}

}

What does this program do?

… on n=11?

… on n=10000000000000000001?

Nobody knows whether or not

this program halts on all inputs!

Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

Binary Palindromes

{001, 10, 12}

Java

Some Notation

We’re going to be talking about Java code.

CODE(P) will mean “the code of the program P”

So, consider the following function:

public String P(String x) {

return new String(Arrays.sort(x.toCharArray());

}

What is P(CODE(P))?

“(((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

The Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]: There is no program that solves

the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Terminology

• With state machines, we say that a machine

“recognizes” the language L iff

– it accepts x ∈ Σ* if x ∈ L

– it rejects x ∈ Σ* if x ∉ L

• With Java programs / general computation, we

say that the computer “decides” the language L iff

– it halts with output 1 on input x ∈ Σ* if x ∈ L

– it halts with output 0 on input x ∈ Σ* if x ∉ L

(ordinary machines might not always halt)

• If no machine decides L, then L is “undecidable”

[Turing]: “The Halting Problem is undecidable”

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

Then we can write this program:

public static void D(String s) {

if (H(s,s) == true) {

while (true); // don’t halt

} else {

return; // halt

}

}

public static bool H(String s, String x) { ... }

Does D(CODE(D)) halt?

public static void D(s) {

...

...

...

...

...

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {

if (H(s,s) == true) {

while (true); // don’t halt

} else {

...

}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(s) {

if (H(s,s) == true) {

while (true); // don’t halt

} else {

return; // halt

}

}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {

if (H(s,s) == true) {

while (true); // don’t halt

} else {

return; // halt

}

}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

Contradiction!

public static void D(s) {

if (H(s,s) == true) {

while (true); // don’t halt

} else {

return; // halt

}

}

Done

• We proved that there is no computer

program that can solve the Halting Problem.

– There was nothing special about Java*
[Church-Turing thesis]

• This tells us that there is no compiler that can check our

programs and guarantee to find any infinite loops they

might have.

Where did the idea for creating D come from?

D halts on input code(P) iff H(code(P),code(P)) outputs false

iff P doesn’t halt on input code(P)

public static void D(s) {

if (H(s,s) == true) {

while (true); // don’t halt

} else {

return; // halt

}

}

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

Write <P> for CODE(P)

This listing of all programs really does exist

since the set of all Java programs is countable

The goal of this “diagonal” argument is not

to show that the listing is incomplete but

rather to show that a “flipped” diagonal

element is not in the listing

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

Write <P> for CODE(P)

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

1

0

0

1

0

0

1

0

Write <P> for CODE(P)

Want behavior of program # to be

like the flipped diagonal, so it can’t

be in the list of all programs.

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

Where did the idea for creating D come from?

public static void D(s) {

if (H(s,s) == true) {

while (true); /* don’t halt */

}

else {

return; /* halt */

}

}

D halts on input code(P) iff H(code(P),code(P)) outputs false

iff P doesn’t halt on input code(P)

Therefore, for any program P, D differs from P on input code(P)

