CSE 311: Foundations of Computing

Lecture 28: Undecidability, Reductions, and Turing Machines

Final exam Monday, Review session Sunday

- Monday at either 2:30-4:20 or 4:30-6:20
 - JHN 102
 - Must select your exam time by Saturday
 No changes permitted after that
 - Bring your UW ID
- **Comprehensive:** Full probs only on topics that were covered in homework. May have small probs on other topics.
 - May includes pre-midterm topics, e.g., formal proofs.
 - Reference sheets will be included. Closed book. No notes.
- Review session: Sunday starting at 1 pm on Zoom
 - Bring your questions !!

Review: Countability vs Uncountability

- To prove a set A countable you must show
 - There exists a listing $x_1, x_2, x_3, ...$ such that every element of A is in the list.

- To prove a set B uncountable you must show
 - For every listing $x_1, x_2, x_3, ...$ there exists some element in B that is not in the list.
 - The diagonalization proof shows how to describe a missing element d in B based on the listing x_1, x_2, x_3, \dots . *Important:* the proof produces a d no matter what the listing is.

Last time: Undecidability of the Halting Problem

CODE(P) means "the code of the program P"

The Halting Problem

Given: - CODE(**P**) for any program **P**

- input **x**

Output: true if P halts on input x

false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Proof: By contradiction.

Assume that a program H solving the Halting program does exist. Then program D must exist

Does D(CODE(D)) halt?

```
public static void D(x) {
   if (H(x,x) == true) {
     while (true); /* don't halt */
   }
   else {
     return; /* halt */
   }
}
```

```
The ONLY assumption was the program Hexists
H solves the halting problem implies that
   H(CODE(D),x) is true iff D(x) halts, H(CODE(D)
     The UNLY dissumption must have been false.
Suppose that D(CODE(D)) halts.
   Then, by definition of H it mus
   Which by the defin
                                    (CODE(D)) doesn't halt
Suppose the
                                               Contradiction
   White definition of D means D(CODE(D)) halts
```

SCOOPING THE LOOP SNOOPER A proof that the Halting Problem is undecidable

by Geoffrey K. Pullum (U. Edinburgh)

Now, I won't just assert that, I'll show where it leads: I will prove that although you might work till you drop, you cannot tell if computation will stop.

For imagine we have a procedure called *P* that for specified input permits you to see whether specified source code, with all of its faults, defines a routine that eventually halts.

You feed in your program, with suitable data, and *P* gets to work, and a little while later (in finite compute time) correctly infers whether infinite looping behavior occurs...

SCOOPING THE LOOP SNOOPER

. . .

Here's the trick that I'll use – and it's simple to do. I'll define a procedure, which I will call Q, that will use P's predictions of halting success to stir up a terrible logical mess.

And this program called *Q* wouldn't stay on the shelf; I would ask it to forecast its run on *itself*. When it reads its own source code, just what will it do? What's the looping behavior of *Q* run on *Q*?

...

Full poem at:

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

The Halting Problem isn't the only hard problem

Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then you can use it to build a program deciding the Halting Problem.

- 1. "B decidable → Halting Problem decidable" Shown by general method
- 2. "Halting problem undecidable" Turing
- 3. "Halting Problem undecidable → B undecidable" Contrapositive from 1
- 4. "B undecidable" Modus Ponens 2 & 3

A CSE 121 assignment

Students should write a Java program that:

- Prints "Hello" to the console
- Eventually exits

Our auto-grading program needs to grade the students.

How do we write that grading program?

WE CANT: THIS IS IMPOSSIBLE!

A related undecidable problem

- HelloWorldTesting Problem:
 - Input: CODE(Q) and x
 - Output:

True if Q outputs "HELLO WORLD" on input x

False if Q does not output "HELLO WORLD" on input x

- Theorem: The HelloWorldTesting Problem is undecidable.
- Proof idea: Show that if there is a program T to decide
 HelloWorldTesting then there is a program H to decide the
 Halting Problem for code(P) and x.

A related undecidable problem

- Suppose there is a program T that solves the HelloWorldTesting problem. Define program H that takes input CODE(P) and x and does the following:
 - Creates CODE(Q) from CODE(P) by
 - (1) removing all output statements from CODE(P), and
 - (2) adding a System.out.println("HELLO WORLD") immediately before any spot where P could halt

Then runs T on input CODE(Q) and x.

- If P halts on input x then Q prints HELLO WORLD and halts and so H
 outputs true (because T outputs true on input CODE(Q))
- If P doesn't halt on input x then Q won't print anything since we removed any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.

The HaltsNoInput Problem

- Input: CODE(R) for program R
- Output: True if R halts without reading input
 False otherwise.

Theorem: HaltsNoInput is undecidable

General idea "hard-coding the input":

• Show how to use CODE(P) and x to build CODE(R) so P halts on input $x \Leftrightarrow R$ halts without reading input

The HaltsNoInput Problem

"Hard-coding the input":

- Show how to use CODE(P) and x to build CODE(R) so P halts on input $x \Leftrightarrow R$ halts without reading input
- Replace input statement in CODE(P) that reads input x into variable var, by a hard-coded assignment statement:

- So if we have a program N to decide **HaltsNoInput** then we can use it as a subroutine as follows to decide the Halting Problem, which we know is impossible:
 - On input CODE(P) and x, produce CODE(R). Then run N on input
 CODE(R) and output the answer that N gives.

• The impossibility of writing the **CSE 121** grading program follows by combining the ideas from the undecidability of **HaltsNoInput** and **HelloWorld**.

More Reductions

 Can use undecidability of these problems to show that other problems are undecidable.

- For instance:

EQUIV(P, Q): True if P(x) and Q(x) have the same

behavior for every input x

False otherwise

Rice's theorem

Not every problem on programs is undecidable! Which of these is decidable?

- Input CODE(P) and x
 Output: true if P prints "ERROR" on input x
 after less than 100 steps
 false otherwise
- Input CODE(P) and x
 Output: true if P prints "ERROR" on input x
 after more than 100 steps
 false otherwise

Rice's Theorem (a.k.a. Compilers Suck Theorem - informal):

Any "non-trivial" property of the input-output behavior of Java programs is undecidable.

Computers and algorithms

 Does Java (or any programming language) cover all possible computation? Every possible algorithm?

 There was a time when computers were people who did calculations on sheets paper to solve computational

problems

 Computers as we known them arose from trying to understand everything these people could do.

Before Java

1930's:

How can we formalize what algorithms are possible?

- Turing machines (Turing, Post)
 - basis of modern computers
- Lambda Calculus (Church)
 - basis for functional programming, LISP
- μ-recursive functions (Kleene)
 - alternative functional programming basis

Church-Turing Thesis:

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

- Intuitive justification
- Huge numbers of models based on radically different ideas turned out to be equivalent to TMs

Finite Control

— Brain/CPU that has only a finite # of possible "states of mind"

Recording medium

- An unlimited supply of blank "scratch paper" on which to write & read symbols, each chosen from a finite set of possibilities
- Input also supplied on the scratch paper

Focus of attention

- Finite control can only focus on a small portion of the recording medium at once
- Focus of attention can only shift a small amount at a time

- Recording medium
 - An infinite read/write "tape" marked off into cells
 - Each cell can store one symbol or be "blank"
 - Tape is initially all blank except a few cells of the tape containing the input string
 - Read/write head can scan one cell of the tape starts on input
- In each step, a Turing machine
 - 1. Reads the currently scanned cell
 - 2. Based on current state and scanned symbol
 - i. Overwrites symbol in scanned cell
 - ii. Moves read/write head left or right one cell
 - iii. Changes to a new state
- Each Turing Machine is specified by its finite set of rules

	_	0	1
s ₁	(1, L, s ₃)	(1, L, s ₄)	(0, R, s ₂)
S ₂	(0, R, s ₁)	(1, R, s ₁)	(0, R, s ₁)
s ₃			
S ₄			

UW CSE's Steam-Powered Turing Machine

Original in Sieg Hall stairwell

Ideal Java/C programs:

- Just like the Java/C you're used to programming with, except you never run out of memory
 - Constructor methods always succeed
 - malloc in C never fails

Equivalent to Turing machines except a lot easier to program:

- Turing machine definition is useful for breaking computation down into simplest steps
- We only care about high level so we use programs

Turing's big idea part 1: Machines as data

Original Turing machine definition:

- A different "machine" M for each task
- Each machine M is defined by a finite set of possible operations on finite set of symbols
- So... M has a finite description as a sequence of symbols, its "code", which we denote <M>

You already are used to this idea with the notion of the program code or text but this was a new idea in Turing's time.

Turing's big idea part 2: A Universal TM

- A Turing machine interpreter U
 - On input <M> and its input x,
 U outputs the same thing as M does on input x
 - At each step it decodes which operation M would have performed and simulates it.
- One Turing machine is enough
 - Basis for modern stored-program computer
 Von Neumann studied Turing's UTM design

input
$$X \longrightarrow M(X)$$
 output $X \longrightarrow M(X)$ output $X \longrightarrow M(X)$

Takeaway from undecidability

- You can't rely on the idea of improved compilers and programming languages to eliminate major programming errors
 - truly safe languages can't possibly do general computation
- Document your code
 - there is no way you can expect someone else to figure out what your program does with just your code; since in general it is provably impossible to do this!

We've come a long way!

- Propositional Logic.
- Boolean logic and circuits.
- Boolean algebra.
- Predicates, quantifiers and predicate logic.
- Inference rules and formal proofs for propositional and predicate logic.
- English proofs.
- Set theory.
- Modular arithmetic.
- Prime numbers.
- GCD, Euclid's algorithm, modular inverse, and exponentiation.

We've come a long way!

- Induction and Strong Induction.
- Recursively defined functions and sets.
- Structural induction.
- Regular expressions.
- Context-free grammars and languages.
- Relations and composition.
- Transitive-reflexive closure.
- Graph representation of relations and their closures.

We've come a long way!

- DFAs, NFAs and language recognition.
- Product construction for DFAs.
- Finite state machines with outputs at states.
- Minimization algorithm for finite state machines
- Conversion of regular expressions to NFAs.
- Subset construction to convert NFAs to DFAs.
- Equivalence of DFAs, NFAs, Regular Expressions
- Finite automata for pattern matching.
- Method to prove languages not accepted by DFAs.
- Cardinality, countability and diagonalization
- Undecidability: Halting problem and evaluating properties of programs.

What's next? ...after the final exam...

Foundations II (312)

- Fundamentals of counting, discrete probability, applications of randomness to computing, statistical algorithms and analysis
- Ideas critical for machine learning, algorithms

Data Abstractions (332)

- Data structures, a few key algorithms, parallelism
- Brings programming and theory together
- Makes heavy use of induction and recursive defns

Course Evaluation Online

- Fill this out by Sunday night!
 - Your ability to fill it out will disappear at 11:59 p.m. on Sunday.
 - We really value your feedback!

Final exam Monday, Review session Sunday

- Monday at either 2:30-4:20 or 4:30-6:20
 - JHN 102
 - Must select your exam time by Saturday
 No changes permitted after that
 - Bring your UW ID
- **Comprehensive:** Full probs only on topics that were covered in homework. May have small probs on other topics.
 - May includes pre-midterm topics, e.g., formal proofs.
 - Reference sheets will be included. Closed book. No notes.
- Review session: Sunday starting at 1 pm on Zoom
 - Bring your questions !!