A More Complicated Statement

"Robbie knows the Pythagorean Theorem if he is a mathematician and took geometry, and he is a mathematician or did not take geometry."

Is this a proposition?

We'd like to understand what this proposition means.

In particular, is it true?

Logical Connectives

Negation (not)	$\neg p$
Conjunction (and)	$p \wedge q$
Disjunction (or)	$p \vee q$
Exclusive Or	$p \oplus q$
Implication(if-then)	$p \rightarrow q$
Biconditional	$p \leftrightarrow q$

These ideas have been around for so long most have at least two names.

Two more connectives to discuss!

Properties of Logical Connectives
 You don't have to memorize this list!

These identities hold for all propositions p, q, r

- Identity
- $p \wedge \mathrm{~T} \equiv p$
- $p \vee \mathrm{~F} \equiv p$
- Domination
- $p \vee \mathrm{~T} \equiv \mathrm{~T}$
- $p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
- $p \vee p \equiv p$
- $p \wedge p \equiv p$
- Commutative
- $p \vee q \equiv q \vee p$
- $p \wedge q \equiv q \wedge p$
- Associative
- $(p \vee q) \vee r \equiv r \vee(q \vee r)$
- $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
- $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
- $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
- $p \vee(p \wedge q) \equiv p$
- $p \wedge(p \vee q) \equiv p$
- Negation
- $p \vee \neg p \equiv \mathrm{~T}$
- $p \wedge \neg p \equiv \mathrm{~F}$

Our First Proof

$(a \wedge b) \vee(\neg a \wedge b) \vee(\neg a \wedge \neg b) \equiv$

None of the rules look like this

Practice of Proof-Writing:
Big Picture...WHY do we think this
might be true?
The last two "pieces" came from the $\equiv(\neg a \vee b)$
vacuous proof lines...maybe the " $\neg a$ "
came from there? Maybe that
simplifies down to $\neg a$

