Try it...

What's a possible domain of discourse for these lists of predicates?

1. " x is a cat", " x barks", " x likes to take walks"
2. " x is prime", " $x=5$ " " $x<20$ " " x is a power of two"
3. " x is enrolled in course y ", " y is a pre-req for z "

Translations

"For every x, if x is even, then $x=2$."
"There are x, y such that $\mathrm{x}<y$."
$\exists x(\operatorname{Odd}(x) \wedge \operatorname{LessThan}(x, 5))$
$\forall y(\operatorname{Even}(y) \wedge \operatorname{Odd}(y))$

Quantifiers

Writing implications can be tricky when we change the domain of discourse.

For every cat: if the cat is fat, then it is happy. Domain of Discourse: cats $\quad \forall x[\operatorname{Fat}(x) \rightarrow \operatorname{Happy}(x)]$
What if we change our domain of discourse to be all mammals? We need to limit x to be a cat. How do we do that?

$$
\forall x[(\operatorname{Cat}(x) \wedge \operatorname{Fat}(x)) \rightarrow \operatorname{Happy}(x)] \quad \forall x[\operatorname{Cat}(x) \wedge(\operatorname{Fat}(x) \rightarrow \operatorname{Happy}(x))]
$$

Universal Quantifier

$$
" \forall x "
$$

"for each x ", "for every x ", "for all x " are common translations Remember: upside-down-A for All.

Existential Quantifier

$$
\text { " } \exists x \text { " }
$$

"there is an x ", "there exists an x ", "for some x " are common translations Remember: backwards-E for Exists.

