
Nested Unalike
Quantifiers

CSE 311 Winter 24

Lecture 6

Warm up translate to

predicate logic:

“For every 𝑥, if 𝑥 is prime,

then 𝑥 is odd or 𝑥 = 2.”

Announcements

HW1 solutions handed out in lecture today.

If you missed them, they are in an envelope outside my office door
CSE2 311---in Gates take the elevator to the 3rd floor, turn left.

Don’t need to wait for office hours, upper floors are unlocked 8-5 weekdays

Where were we?

A predicate is a function that outputs a Boolean

Prime(x) := “x is prime”

LessThan(x,y):= “x<y”

The “domain of discourse” is the set of all values your variables can take.
Usually the “type” you’re allowing

Quantifiers

We have two extra symbols to indicate which way we’re using the
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both
evaluate to true.”

2. There’s some 𝑥 out there that works, (but I might not know which it
is, so I’m using a variable).

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥) means “there is an 𝑥 in our domain, such that 𝑝(𝑥) and
𝑞 𝑥 are both true.

Quantifiers

We have two extra symbols to indicate which way we’re using the
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both
evaluate to true.”

2. There’s some 𝑥 out there that works, (but I might not know which it
is, so I’m using a variable).

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥) means “there is an 𝑥 in our domain, 𝑝(𝑥) and 𝑞 𝑥 are
both true.

“∀𝑥“
“for each 𝑥”, “for every 𝑥”, “for all 𝑥” are common translations

Remember: upside-down-A for All.

Universal Quantifier

Quantifiers

We have two extra symbols to indicate which way we’re using the
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both
evaluate to true.”

2. There’s some 𝑥 out there that works, (but I might not know which it
is, so I’m using a variable).

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥) means “there is an 𝑥 in our domain, for which 𝑝(𝑥) and
𝑞 𝑥 are both true.

“∃𝑥“
“there is an 𝑥”, “there exists an 𝑥”, “for some 𝑥” are common translations

Remember: backwards-E for Exists.

Existential Quantifier

One Technical Matter

How do we parse sentences with quantifiers?
What’s the “order of operations?”

We will usually put parentheses right after the quantifier and variable to
make it clear what’s included. If we don’t, it’s the rest of the expression.

Be careful with repeated variables…they don’t always mean what you
think they mean.

∀𝑥 𝑃 𝑥 ∧ ∀𝑥(𝑄 𝑥) are different 𝑥’s.

Bound Variables

What happens if we repeat a variable?

Whenever you introduce a new quantifier with an already existing
variable, it “takes over” that name until its expression ends.

∀𝑥(𝑃 𝑥 ∧ ∀𝑥 𝑄 𝑥 ∧ 𝑅 𝑥)

It’s common (albeit somewhat confusing) practice to reuse a variables
when it “wouldn’t matter”.

Never do something like the above: where a single name switches from
gold to purple back to gold. Switching from gold to purple only is
usually fine…but names are cheap.

More Practice

Let your domain of discourse be fruits. Translate these

There is a fruit that is tasty and ripe.

For every fruit, if it is not ripe then it is not tasty.

There is a fruit that is sliced and diced.

More Practice

Let your domain of discourse be fruits. Translate these

There is a fruit that is tasty and ripe.

For every fruit, if it is not ripe then it is not tasty.

There is a fruit that is sliced and diced.

∃𝑥(Tasty 𝑥 ∧Ripe 𝑥)

∀𝑥(¬Ripe 𝑥 → ¬Tasty 𝑥)

∃𝑥(Sliced 𝑥 ∧ Diced 𝑥)

Domain Restriction

Quantifiers

∀ (for All) and ∃ (there Exists)

Write these statements in predicate logic with quantifiers. Let your
domain of discourse be “cats”

If a cat is fat, then it is happy.
This sentence implicitly makes a statement about all cats!

∀𝑥[Fat 𝑥 → Happy 𝑥]

Quantifiers

Writing implications can be tricky when we change the domain of
discourse.

For every cat: if the cat is fat, then it is happy.

∀𝑥[(Cat 𝑥 ∧ Fat 𝑥) →Happy 𝑥]

∀𝑥[Fat 𝑥 → Happy 𝑥]Domain of Discourse: cats

What if we change our domain of discourse to be all mammals?

We need to limit 𝑥 to be a cat. How do we do that?

∀𝑥[Cat 𝑥 ∧(Fat 𝑥 →Happy 𝑥)]

Quantifiers

∀𝑥[(Cat 𝑥 ∧ Fat 𝑥) →Happy 𝑥] ∀𝑥[Cat 𝑥 ∧(Fat 𝑥 →Happy 𝑥)]

For all mammals, if 𝑥 is a cat and fat

then it is happy

[if 𝑥 is not a cat, the claim is vacuously

true, you can’t use the promise for

anything]

For all mammals, that mammal is a cat

and if it is fat then it is happy.

[what if 𝑥 is a dog? Dogs are in the

domain, but…uh-oh. This isn’t what we

meant.]

Which of these translates “For every cat: if a cat is fat then it is happy.”

when our domain of discourse is “mammals”?

To “limit” variables to a portion of your domain of discourse

under a universal quantifier add a hypothesis to an implication.

Quantifiers

Existential quantifiers need a different rule:

To “limit” variables to a portion of your domain of discourse under an existential

quantifier AND the limitation together with the rest of the statement.

There is a dog who is not happy.

Domain of discourse: dogs
∃𝑥(¬ Happy(𝑥))

Quantifiers

∃𝑥[(Dog 𝑥 ∧ ¬Happy 𝑥]∃𝑥[Dog 𝑥 → ¬Happy 𝑥]

There is a mammal, such that if 𝑥 is a

dog then it is not happy.

[this can’t be right – plug in a cat for 𝑥
and the implication is true]

There is a mammal that is both a dog

and not happy.

[this one is correct!]

Which of these translates “There is a dog who is not happy.”

when our domain of discourse is “mammals”?

To “limit” variables to a portion of your domain of discourse under an existential

quantifier AND the limitation together with the rest of the statement.

Why are the rules what they are?

A universal quantifier is a “Big AND”

For a domain of discourse of {𝑒1, 𝑒2, … , 𝑒𝑘}

∀𝑥(𝑃 𝑥) means 𝑃 𝑒1 ∧ 𝑃 𝑒2 ∧ ⋯∧ 𝑃(𝑒𝑘)

Now let’s say our domain is {𝑒1, 𝑒2, … , 𝑒𝑘 , 𝑓1, 𝑓2, … , 𝑓𝑗} where 𝑓𝑖 are the
irrelevant parts of the bigger domain (non-cat-mammals). We want the
expression to be

𝑃 𝑒1 ∧ 𝑃 𝑒2 ∧ ⋯∧ 𝑃 𝑒𝑘 ∧ 𝑇 ∧ 𝑇…∧ 𝑇

∀𝑥(𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝐷𝑜𝑚𝑎𝑖𝑛 𝑥 → 𝑃 𝑥) does that!

Why are the rules what they are?

An existential quantifier is a “Big OR”

For a domain of discourse of {𝑒1, 𝑒2, … , 𝑒𝑘}

∃𝑥(𝑃 𝑥) means 𝑃 𝑒1 ∨ 𝑃 𝑒2 ∨ ⋯∨ 𝑃(𝑒𝑘)

Now let’s say our domain is {𝑒1, 𝑒2, … , 𝑒𝑘 , 𝑓1, 𝑓2, … , 𝑓𝑗} where 𝑓𝑖 are the
irrelevant parts of the bigger domain (non-cat-mammals). We want the
expression to be

𝑃 𝑒1 ∨ 𝑃 𝑒2 ∨ ⋯∨ 𝑃 𝑒𝑘 ∨ 𝐹 ∨ 𝐹 …∨ 𝐹

∃𝑥(𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝐷𝑜𝑚𝑎𝑖𝑛 𝑥 ∧ 𝑃 𝑥) does that!

Negating Quantifiers

What happens when we negate an expression with quantifiers?

What does your intuition say?

Original
Negation

Every positive integer is prime There is a positive integer that is not prime.

∀𝑥 Prime(𝑥)

Domain of discourse: positive integers

∃𝑥(¬ Prime(𝑥))

Domain of discourse: positive integers

Negating Quantifiers

Let’s try on an existential quantifier…

There is a positive integer which is prime

and even.

Original Negation

∃𝑥(Prime 𝑥 ∧ Even 𝑥)

Domain of discourse: positive integers

Every positive integer is composite or odd.

∀𝑥(¬Prime 𝑥 ∨ ¬Even 𝑥)

Domain of discourse: positive integers

To negate an expression with a quantifier

1. Switch the quantifier (∀ becomes ∃, ∃ becomes ∀)

2. Negate the expression inside

Negation

Translate these sentences to predicate logic, then negate them.

All cats have nine lives.

All dogs love every person.

There is a cat that loves someone.

∀𝑥 𝐶𝑎𝑡 𝑥 → 𝑁𝑢𝑚𝐿𝑖𝑣𝑒𝑠 𝑥, 9

∃𝑥(𝐶𝑎𝑡 𝑥 ∧ ¬ 𝑁𝑢𝑚𝐿𝑖𝑣𝑒𝑠 𝑥, 9) “There is a cat without 9 lives.

∀𝑥∀𝑦 𝐷𝑜𝑔 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛(𝑦) → 𝐿𝑜𝑣𝑒 𝑥, 𝑦

∃𝑥∃𝑦(𝐷𝑜𝑔 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦) “There is a dog who does not love

someone.” “There is a dog and a person such that the dog doesn’t love that person.”

∃𝑥∃𝑦(𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ 𝐿𝑜𝑣𝑒(𝑥, 𝑦)
∀𝑥∀𝑦(𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 → ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦)

“For every cat and every human, the cat does not love that human.”

“Every cat does not love any human” (“no cat loves any human”)

Negation with Domain Restriction

∃𝑥∃𝑦(𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ 𝐿𝑜𝑣𝑒(𝑥, 𝑦)

∀𝑥∀𝑦([𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦] → ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦)

There are lots of equivalent expressions to the second. This one is by far
the best because it reflects the domain restriction happening. How did
we get there?
There’s a problem in this week’s section handout showing similar algebra.

Nested Quantifiers

Everyone is friends with someone. Someone is friends with everyone.

Nested Quantifiers

Translate these sentences using only quantifiers and the predicate AreFriends(𝑥, 𝑦)

Everyone is friends with someone. Someone is friends with everyone.

Nested Quantifiers

Translate these sentences using only quantifiers and the predicate AreFriends(𝑥, 𝑦)

∀𝑥(∃𝑦 AreFriends(𝑥, 𝑦)) ∃𝑥(∀𝑦 AreFriends(𝑥, 𝑦))

∀𝑥∃𝑦 AreFriends(𝑥, 𝑦) ∃𝑥∀𝑦 AreFriends(𝑥, 𝑦)

Nested Quantifiers

∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

“For every 𝑥 there exists a 𝑦 such that 𝑃 𝑥, 𝑦 is true.”

𝑦 might change depending on the 𝑥 (people have different friends!).

∃𝑥∀𝑦 𝑃(𝑥, 𝑦)

“There is an 𝑥 such that for all 𝑦, 𝑃(𝑥, 𝑦) is true.”

There’s a special, magical 𝑥 value so that 𝑃 𝑥, 𝑦 is true regardless of 𝑦.

Nested Quantifiers

Let our domain of discourse be
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

And our proposition 𝑃(𝑥, 𝑦) be
given by the table.

What should we look for in the table?

∃𝑥∀𝑦𝑃 𝑥, 𝑦

∀𝑥∃𝑦𝑃(𝑥, 𝑦)

𝑃(𝑥, 𝑦) A B C D E

A T T T T T

B T F F T F

C F T F F F

D F F F F T

E F F F T F

𝑦

𝑥

Nested Quantifiers

Let our domain of discourse be
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

And our proposition 𝑃(𝑥, 𝑦) be
given by the table.

What should we look for in the table?

∃𝑥∀𝑦𝑃 𝑥, 𝑦

A row, where every entry is T

∀𝑥∃𝑦𝑃(𝑥, 𝑦)

In every row there must be a T

𝑃(𝑥, 𝑦) A B C D E

A T T T T T

B T F F T F

C F T F F F

D F F F F T

E F F F T F

𝑦

𝑥

Keep everything in order

Keep the quantifiers in the same order in English as they are in the
logical notation.

“There is someone out there for everyone” is a ∀𝑥∃𝑦 statement in
“everyday” English.

It would never be phrased that way in “mathematical English” We’ll only
every write “for every person, there is someone out there for them.”

Try it yourselves

Every cat loves some human. There is a cat that loves every human.

Let your domain of discourse be mammals.
Use the predicates Cat(𝑥), Dog(𝑥), and Loves(𝑥, 𝑦) to mean 𝑥 loves 𝑦.

Try it yourselves

Every cat loves some human. There is a cat that loves every human.

∀𝑥 (Cat 𝑥 → ∃𝑦[Human(𝑦) ∧Loves(𝑥, 𝑦)])

∀𝑥∃𝑦(Cat 𝑥 → [Human(𝑦) ∧ Loves(𝑥, 𝑦)]) ∃𝑥 (Cat 𝑥 ∧ ∀𝑦[Human 𝑦 →Loves(𝑥, 𝑦)])

∃𝑥∀𝑦(Cat 𝑥 ∧ [Human(𝑦) → Loves(𝑥, 𝑦)])

Negation

How do we negate nested quantifiers?

The old rule still applies.

To negate an expression with a quantifier

1. Switch the quantifier (∀ becomes ∃, ∃ becomes ∀)

2. Negate the expression inside

¬(∀𝑥∃𝑦∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧)

∃𝑥(¬ ∃𝑦∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧)

∃𝑥∀𝑦(¬ ∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧)

∃𝑥∀𝑦∃𝑧(¬ 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧)

∃𝑥∀𝑦∃𝑧[¬𝑃 𝑥, 𝑦 ∨ ¬𝑄 𝑦, 𝑧]

More Translation

For each of the following, translate it, then say whether the statement is
true. Let your domain of discourse be integers.

For every integer, there is a greater integer.

There is an integer 𝑥, such that for all integers 𝑦, 𝑥𝑦 is equal to 1.

∀𝑦∃𝑥(Equal 𝑥 + 𝑦, 1)

∀𝑥∃𝑦(Greater(𝑦, 𝑥)) (This statement is true: 𝑦 can be 𝑥 + 1 [𝑦 depends on 𝑥])

∃𝑥∀𝑦(Equal(𝑥𝑦, 1)) (This statement is false: no single value of 𝑥 can play

that role for every 𝑦.)

For every integer, 𝑦, there is an integer 𝑥 such that 𝑥 + 𝑦 = 1
(This statement is true, 𝑦 can depend on 𝑥)

