Another Direct Proof

Definitions
$\operatorname{Odd}(x):=\exists k(x=2 k+1)$

Prove: "The product of two odd integers is odd."

$$
\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow \operatorname{Odd}(x y))
$$

Yet Another Direct Proof

Definitions
Square $(x):=\exists k\left(x=k^{2}\right)$

Prove: "The product of two square integers is square."

$$
\forall n \forall m((\operatorname{Square}(n) \wedge \operatorname{Square}(m)) \rightarrow \text { Square }(n m))
$$

Two claims, two proof techniques

Suppose I claim that all square numbers are even.
That...doesn't look right.
How do you prove me wrong?

What am I trying to prove? First write symbols for " \neg (for all square numbers)"
Then 'distribute' the negation sign.

Proof By Cases

Claim: $\forall x(\operatorname{Prime}(x) \rightarrow[\operatorname{Odd}(x) \vee \operatorname{PowerOfTwo}(x)])$
Where PowerOfTwo $(x):=\exists c$ (Integer $(c) \wedge x=2^{\wedge} c$)
You may assume for this proof that 2 is the only even prime.
Let x be an arbitrary prime number.

You need two different arguments!

