
More English Proofs CSE 311 Winter 24

Lecture 8



Regrades

TAs make mistakes!

When I was a TA, I made errors on 1 or 2% of my grading that needed 
to be corrected. If we made a mistake, file a regrade request on 
gradescope.

But those are only for mistakes, not for whether “-1 would be more fair”

If you are confused, please talk to us! 
My favorite office hours questions are “can we talk about the best way to do 
something on the homework we just got back?”

If after you do a regrade request on gradescope, you still think a grading was 
incorrect, send email to Robbie.

Regrade requests will close about 1 week after homework is returned.



Integer

We need a basic starting point to be able to prove things.

Objects to work with.

Some definitions to analyze

An integer: is any real number with no fractional part.

Even(x) := An integer, 𝒙, is even 

if and only if there is an integer 

𝒌 such that 𝒙 = 𝟐𝒌.

Even

Odd(x) := An integer, 𝒙, is odd 

if and only if there is an integer 

𝒌 such that 𝒙 = 𝟐𝒌 + 𝟏.

Odd



Our First Direct Proof

Prove: “For all integers 𝑥, if 𝑥 is even, then 𝑥2 is even.”  ∀𝑥 Even 𝑥 → Even 𝑥2

Proof: Let 𝑥 be an arbitrary integer. Suppose that 𝑥 is even.

By definition of even, 𝑥 = 2𝑘 for some integer 𝑘.

Squaring both sides, we see that:

𝑥2 = 2𝑘 2 = 4𝑘2 = 2 ⋅ 2𝑘2

Because 𝑘 is an integer, 2𝑘2 is also an integer.

So 𝑥2 is two times an integer.

Which is exactly the definition of even, so 𝑥2 is even.

Since 𝑥 was an arbitrary integer, we conclude that for all integers 𝑥, if 𝑥 is even then 
𝑥2 is also even.

Definitions
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)



Direct Proof Template

Let 𝑥 be an arbitrary integer. 

Suppose that 𝑥 is even. 

Then by definition of even, there exists some 

integer 𝑘 such that 𝑥 = 2𝑘. 

Squaring both sides, we see that:

𝑥2 = 2𝑘 2 = 4𝑘2 = 2 ⋅ 2𝑘2

Because 𝑘 is an integer, then 2𝑘2 is also an 

integer.  So 𝑥2 is two times an integer. 

So by definition of even, 𝑥2 is even.

Since 𝑥 was an arbitrary integer, we can conclude 

that for all integers 𝑥, if 𝑥 is even then 𝑥2 is even.

Declare an arbitrary variable for each ∀.

Assume the left side of the implication.

Unroll the predicate definitions.

Manipulate towards the goal.

Reroll definitions into the right side of the 

implication.

Conclude that you have proved the claim.

Prove: ∀𝑥 Even 𝑥 → Even 𝑥2



Direct Proof Steps

These are the usual steps. We’ll see different outlines in the future!!

• Introduction

• Declare an arbitrary variable for each ∀ quantifier

• Assume the left side of the implication

• Core of the proof

• Unroll the predicate definitions

• Manipulate towards the goal (using creativity, algebra, etc.)

• Reroll definitions into the right side of the implication

• Conclude that you have proved the claim



Another Direct Proof

Prove: “The product of two odd integers is odd.”

What’s the claim in logic?

How would we prove this claim?



Another Direct Proof

Prove: “The product of two odd integers is odd.”  

∀𝑥∀𝑦 Odd 𝑥 ∧ Odd 𝑦 → Odd 𝑥𝑦

Definitions
Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)



Another Direct Proof

Prove: “The product of two odd integers is odd.”

What’s the claim in logic?  ∀𝑥∀𝑦 Odd 𝑥 ∧ Odd 𝑦 → Odd 𝑥𝑦

How would we prove this claim?

Direct Proof. In particular, we’ll let 𝑥, 𝑦 be arbitrary integers. We’ll 

suppose 𝑥, 𝑦 are odd. We’ll show that 𝑥 ⋅ 𝑦 is odd.



Another Direct Proof

Prove: “The product of two odd integers is odd.”  

∀𝑥∀𝑦 Odd 𝑥 ∧ Odd 𝑦 → Odd 𝑥𝑦

Let 𝑥 and 𝑦 be arbitrary integers. Suppose that 𝑥 and 𝑦 are odd. Then by definition 
of odd, there exists some integer 𝑘 such that 𝑥 = 2𝑘 + 1, and some integer 𝑗 such 
that 𝑦 = 2𝑗 + 1.

Then multiplying 𝑥 and 𝑦, we can see that:

𝑥𝑦 = 2𝑘 + 1 ⋅ 2𝑗 + 1 = 4𝑘𝑗 + 2𝑗 + 2𝑘 + 1 = 2 2𝑘𝑗 + 𝑗 + 𝑘 + 1

Since 𝑘, 𝑗 are integers, 2𝑘𝑗 + 𝑗 + 𝑘 is an integer. So by definition of odd, 𝑥𝑦 is odd. 
Since 𝑥, 𝑦 were arbitrary, we have shown that the product of two odd integers is 
odd.

Definitions
Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)



A note on Domain of Discourse

“The product of two odd integers is odd.”  

Domain: Integers Domain: Odd Integers

Translation: Translation:

∀𝑥∀𝑦 Odd 𝑥 ∧ Odd 𝑦 → Odd 𝑥𝑦 ∀𝑥∀𝑦 Odd 𝑥𝑦

Proof Outline: Proof Outline:

Let 𝑥 and 𝑦 be arbitrary integers. Let 𝑥 and 𝑦 be arbitrary odd integers.

Suppose 𝑥 and 𝑦 are odd. Show 𝑥𝑦 is odd.

Show 𝑥𝑦 is odd.



A note on Translation to Logic

• We first translate the claim to predicate logic because: 

- The translation makes it precise what we are proving

- The translation hints at the structure of the proof

e.g. for each ∀, introduce an arbitrary variable

• In practice, computer scientists identify the proof claim and structure without 

predicate logic translation

• Eventually we’ll stop asking you to translate to logic first



Square

Definition: 

An integer 𝑥 is square iff there exists an integer 𝑘 such that 𝑥 = 𝑘2.

Square 𝑥 ≔ ∃𝑘 𝑥 = 𝑘2



Yet Another Direct Proof

Prove: The product of two square integers is square.

What’s the claim in logic?

∀𝑛∀𝑚 Square 𝑛 ∧ Square 𝑚 → Square 𝑛𝑚

Prove this claim.

Definitions

Square 𝑥 ≔ ∃𝑘 𝑥 = 𝑘2



Yet Another Direct Proof

Prove: “The product of two square integers is square.”

∀𝑛∀𝑚 Square 𝑛 ∧ Square 𝑚 → Square 𝑛𝑚

Definitions

Square 𝑥 ≔ ∃𝑘 𝑥 = 𝑘2



Yet Another Direct Proof

Prove: “The product of two square integers is square.”

∀𝑛∀𝑚 Square 𝑛 ∧ Square 𝑚 → Square 𝑛𝑚

Let 𝑛 and 𝑚 be arbitrary integers. Suppose that 𝑛 and 𝑚 are square. Then by 
definition of square, 𝑛 = 𝑘2 for some integer 𝑘, and 𝑚 = 𝑗2 for some integer 𝑗. 

Then multiplying 𝑛 and 𝑚, we can see:

𝑛𝑚 = 𝑘2 ⋅ 𝑗2 = 𝑘𝑗 2

Since 𝑘 and 𝑗 are integers, 𝑘𝑗 is an integer. So by definition of square, 𝑛𝑚 is square. 
Since 𝑛 and 𝑚 were arbitrary, we have shown that the product of two square 
integers is square.

Definitions

Square 𝑥 ≔ ∃𝑘 𝑥 = 𝑘2



More Proof Techniques



Proving an exists statement

How do I convince you ∃𝑥(𝑃 𝑥 )?

Show me the 𝑥! And convince me that 𝑃(𝑥) is true for that 𝑥.

Domain: Integers

Claim ∃𝑥 Even(𝑥)

Proof: Consider 𝑥 = 2. We see that 2 = 2 ⋅ 1. Since 1 is an integer 2 =
2𝑘 for an integer 𝑘, which means 2 is even by definition, as required. 



Two claims, two proof techniques

Suppose I claim that all square numbers are even.

That…doesn’t look right. 

How do you prove me wrong? 

What am I trying to prove? First write symbols for “¬(for all square 
numbers)” 

Then ‘distribute’ the negation sign.



Two claims, two proof techniques

Suppose I claim that all square numbers are even.

That…doesn’t look right. 

How do you prove me wrong? 

Want to show: ∃𝑥(Square x ∧ ¬Even 𝑥 )

Consider 𝑥 = 9. 9 is a perfect square (9 = 32) and 9 is not even (since it 
is 2 ⋅ 4 + 1, i.e., odd). 



Proof By [Counter]Example

To prove an existential statement (or disprove a universal statement), 
provide an example, and demonstrate that it is the needed example.

You don’t have to explain where it came from! (In fact, you shouldn’t)

Computer scientists and mathematicians like to keep an air of mystery 
around our proofs.
(or more charitably, we want to focus on just enough to believe the claim) 



Skeleton of an Exists Proof

To show ∃𝑥(𝑃 𝑥 )

Consider 𝑥 =[the value that will work]

[Show that 𝑥 does cause 𝑃(𝑥) to be true.]

So [value] is the desired 𝑥.

You’ll probably need some “scratch work” to determine what to set 𝑥 to. 
That might not end up in the final proof!



Proof By Cases

Claim: ∀𝑥( Prime 𝑥 → [ Odd 𝑥 ∨ PowerOfTwo(𝑥)])

Where PowerOfTwo 𝑥 ≔ ∃𝑐(Integer 𝑐 ∧ 𝑥 = 2^𝑐)

You may assume for this proof that 2 is the only even prime.

Let 𝑥 be an arbitrary prime number. 

You need two different arguments!



Proof By Cases

Claim: ∀𝑥( Prime 𝑥 → [ Odd 𝑥 ∨ PowerOfTwo(𝑥)])

Where PowerOfTwo 𝑥 ≔ ∃𝑐(Integer 𝑐 ∧ 𝑥 = 2^𝑐)

You may assume for this proof that 2 is the only even prime.

Let 𝑥 be an arbitrary prime number. We have two cases:

Case 1: 𝑥 is even

Case 2:𝑥 is odd.



Proof By Cases

Claim: ∀𝑥( Prime 𝑥 → [ Odd 𝑥 ∨ PowerOfTwo(𝑥)])

Where PowerOfTwo 𝑥 ≔ ∃𝑐(Integer 𝑐 ∧ 𝑥 = 2^𝑐)

You may assume for this proof that 2 is the only even prime.

Let 𝑥 be an arbitrary prime number. We have two cases:

Case 1: 𝑥 is even

2 is the only even prime. Since 2 = 21, PowerOfTwo(2) is true, so Odd(2) ∨
PowerOfTwo(2) is also true.

Case 2:𝑥 is odd.

Then 𝑂𝑑𝑑(𝑥) is true, so Odd(x)∨PowerOfTwo(x) is also true.

In both cases, we conclude Odd 𝑥 ∨ PowerOfTwo(𝑥). Since 𝑥 was arbitrary, 
we have that all prime numbers are odd or powers of two, as required.



Proof By Cases

Make it clear how you decide which case your in.

It should be obvious your cases are “exhaustive”

Reach the same conclusion in each of the cases, and you can say you’ve 
got that conclusion no matter what (outside the cases).

Advanced version: sometimes you end up arguing a certain case “can’t 
happen”


