Another Proof

Claim: $\forall a(\text{Even}(a^2) \rightarrow \text{Even}(a))$ "if a^2 is even, then a is even." See how far you get (this is somewhat a trick question).

At the very least, introduce variables, assume anything you can at the start, put down your "target" at the bottom of the paper.

Divides		
Divides		
For integers x, y we say $x y$ ("x divides y") iff there is an integer z such that $xz = y$.		
Which of these are true?		
2 4	4 2	2 -2
5 0	0 5	1 5

Another Proof

For all integers, a, b, c: Show that if $a \nmid (bc)$ then $a \nmid b$ or $a \nmid c$. Proof:

Let a, b, c be arbitrary integers, and suppose $a \nmid (bc)$.

Then there is not an integer z such that az = bc

•••

So $a \nmid b$ or $a \nmid c$