Another Proof

Claim: $\forall a\left(\operatorname{Even}\left(a^{2}\right) \rightarrow \operatorname{Even}(a)\right)$ "if a^{2} is even, then a is even."
See how far you get (this is somewhat a trick question).

At the very least, introduce variables, assume anything you can at the start, put down your "target" at the bottom of the paper.

Divides

Divides

> For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Which of these are true?
$2 \mid 4$
$4 \mid 2$
$2 \mid-2$
$5 \mid 0$
$0 \mid 5$
1|5

Unique

The Division Theorem

For every $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
There exist unique integers q, r with $0 \leq r<d$ Such that $a=d q+r$
"unique" means "only one"....but be careful with how this word is used.
r is unique, given a, d. - it still depends on a, d but once you've chosen a and d
"unique" is not saying $\exists r \forall a, d \quad P(a, d, r)$
It's saying $\forall a, d \exists r[P(a, d, r) \wedge[P(a, d, x) \rightarrow x=r]]$

Another Proof

For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.
Proof:
Let a, b, c be arbitrary integers, and suppose $a \nmid(b c)$.
Then there is not an integer z such that $a z=b c$

So $a \nmid b$ or $a \nmid c$

