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Today

Another proof technique (proof by contrapositive)

Start on Number theory definitions



Proof by Contrapositive



Another Proof

Claim: ∀𝑎(Even(𝑎2)→Even(𝑎)) “if 𝑎2 is even, then 𝑎 is even.”

See how far you get (this is somewhat a trick question).

At the very least, introduce variables, assume anything you can at the 
start, put down your “target” at the bottom of the paper.



Trying a direct proof

∀𝑎(Even(𝑎2)→Even(𝑎)) “if 𝑎2 is even, then 𝑎 is even.”



Trying a direct proof

∀𝑎(Even(𝑎2)→Even(𝑎))

Let 𝑎 be an arbitrary integer and suppose that 𝑎2 is even.

By definition of even, 𝑎2 = 2𝑘 for some integer 𝑘.

Taking the positive square-root of each side, we get 𝑎 = 2𝑘

….

Therefore 𝑎 is even.

Taking a square root of a 

variable is tricky! It’s hard 

to do algebra on.



Trying a direct proof

∀𝑎(Even(𝑎2)→Even(𝑎))

Let 𝑎 be an arbitrary integer and suppose that 𝑎2 is even.

By definition of even, 𝑎2 = 2𝑘 for some integer 𝑘.

Taking the positive square-root of each side, we get 𝑎 = 2𝑘

….

Therefore 𝑎 is even.



What should we do?

We’re trying to show an implication. How can we transform 
implications? Could that make it easier?

Maybe a transformation that would “switch the order” so that instead of 
taking a square root, we’re squaring…

Take a contrapositive!



Proving by contrapositive

∀𝑎(Even(𝑎2)→Even(𝑎)) ≡ ∀𝑎(¬Even(𝑎)→ ¬Even(𝑎2)) ≡ ∀𝑎(Odd(𝑎) → Odd (𝑎2))

We argue by contrapositive.

Let 𝑎 be an arbitrary integer and suppose 𝑎 is odd.

we thus get that 𝑎2 meets the definition of odd (being 2 times an integer plus one), 
as required. 

Since 𝑎 was arbitrary, we have that for every odd 𝑎, that 𝑎2 is also odd, which is the 
contrapositive of our original claim.



Proving by contrapositive

∀𝑎(Even(𝑎2)→Even(𝑎)) ≡ ∀𝑎(¬Even(𝑎)→ ¬Even(𝑎2)) ≡ ∀𝑎(Odd(𝑎) → Odd (𝑎2))

We argue by contrapositive.

Let 𝑎 be an arbitrary integer and suppose 𝑎 is odd.

By definition of odd, 𝑎 = 2𝑘 + 1 for some integer 𝑘.

Squaring both sides, we get 𝑎2 = 2𝑘 + 1 2 = 4𝑘2 + 4𝑘 + 1

Rearranging, we get 𝑎2 = 2 2𝑘2 + 2𝑘 + 1. Since 𝑘 is an integer, 2𝑘2 + 2𝑘 is an 
integer, we thus get that 𝑎2 meets the definition of odd (being 2 times an integer 
plus one), as required. 

Since 𝑎 was arbitrary, we have that for every odd 𝑎, that 𝑎2 is also odd, which is the 
contrapositive of our original claim.



Proof by contrapositive in general

You might write down the contrapositive for yourself, but it doesn’t go 
in the proof.

Tell your reader you’re arguing by contrapositive right at the start! 
(Otherwise it’ll look like you’re proving the wrong thing!)

The quantifier(s) don’t change! Just the implication inside.



Signs you might want to 
use proof by contrapositive

1. The hypothesis of the implication you’re proving has a “not” in it (that 
you think is making things difficult)

2. The target of the implication you’re proving has an “or” or “not” in it.

3. There’s a step that is difficult forward, but easy backwards
e.g., taking a square-root forward, squaring backwards.

4. You get halfway through the proof and you can’t “get ahold of” what 
you’re trying to show.
e.g., you’re working with a “not equal” instead of an “equals” or “every thing doesn’t 
have this property” instead of “some thing does have that property”

All of these are reasons you might want contrapositive. Sometimes you 
just have to try and see what happens!



Number Theory



Why Number Theory?

Applicable in Computer Science

“hash functions” (you’ll see them in 332) commonly use modular arithmetic

Much of classical cryptography is based on prime numbers. 

More importantly, a great playground for writing English proofs. 



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.

Prime Numbers

Modular Arithmetic

Modular Multiplicative Inverse

Bezout’s Theorem

Extended Euclidian Algorithm



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.

Modular Exponentiation



Divides

“𝑥 is a divisor of 𝑦” or "𝑥 is a factor of 𝑦” means (essentially) the same 
thing as 𝑥 divides 𝑦. 
(“essentially” because of edge cases like when a number is negative or 𝑦 = 0)

“The small number goes first*” *when both are positive integers

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides



Divides

Which of these are true?

2|4 4|2 2| − 2

5|0 0|5 1|5

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides



Divides

Which of these are true?

2|4 4|2 2| − 2

5|0 0|5 1|5

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides

True False

FalseTrue True

True



A useful theorem 

Remember when non integers were still secret, you did division like this?

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

𝑞 is the “quotient”

𝑟 is the “remainder”



Unique

“unique” means “only one”….but be careful with how this word is used.

𝑟 is unique, given 𝑎, 𝑑. – it still depends on 𝑎, 𝑑 but once you’ve chosen 
𝑎 and 𝑑

“unique” is not saying ∃𝑟∀𝑎, 𝑑 𝑃(𝑎, 𝑑, 𝑟)
It’s saying ∀𝑎, 𝑑∃𝑟[𝑃 𝑎, 𝑑, 𝑟 ∧ 𝑃 𝑎, 𝑑, 𝑥 → 𝑥 = 𝑟 ]

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem



A useful theorem 

The 𝑞 is the result of a/d (integer division) in Java

The 𝑟 is the result of a%d in Java

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

That’s slightly a lie, 𝑟 is always non-

negative, Java’s % operator sometimes 

gives a negative number.



Terminology

You might have called the % operator in Java “mod”

We’re going to use the word “mod” to mean a closely related, but 
different thing.

Java’s % is an operator (like + or ⋅) you give it two numbers, it produces 
a number. 

The word “mod” in this class, refers to a set of rules



Modular Arithmetic

“arithmetic mod 12” is familiar to you. You do it with clocks.

What’s 3 hours after 10 o’clock?

1 o’clock. You hit 12 and then “wrapped around”

“13 and 1 are the same, mod 12” “-11 and 1 are the same, mod 12”

We don’t just want to do math for clocks – what about if we need to talk 
about parity (even vs. odd) or ignore higher-order-bits (mod by 16, for 
example)



Modular Arithmetic

To say “the same” we don’t want to use = … that means the normal =

We’ll write 13 ≡ 1(mod 12)

≡ because “equivalent” is “like equal,” and the “modulus” we’re using in 
parentheses at the end so we don’t forget it. 
(we’ll also say “congruent mod 12”)

The notation here is bad. We all agree it’s bad. Most people still use it.

13 ≡12 1 would have been better. “mod 12” is giving you information 
about the ≡ symbol, it’s not operating on 1.



Modular Arithmetic

We need a definition! We can’t just say “it’s like a clock”

Pause what do you expect the definition to be?

Is it related to % ?



Modular Arithmetic

We need a definition! We can’t just say “it’s like a clock”

Pause what do you expect the definition to be?

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

Huh?



Long Pause

It’s easy to read something with a bunch of symbols and say “yep, those 
are symbols.” and keep going

STOP Go Back. 

You have to fight the symbols they’re probably trying to pull a fast one 
on you. 

Same goes for when I’m presenting a proof – you shouldn’t just believe 
me – I’m wrong all the time!

You should be trying to do the proof with me. Where do you think we’re 
going next?



Why? 

Your Tas will take a bit of time in section on this.

Here’s the short version:

It really is equivalent to ”what we expected”
a%n=b%n if and only if 𝑛|(𝑏 − 𝑎)

The divides version is much easier to use in proofs…

27

15

27 − 15 = 12

When you subtract, 

the remainders cancel. 

What you’re left with 

is a multiple of 12.



Another contrapositive example



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

There has to be a better way! 

If only there were some equivalent implication…

One where we could negate everything…

Take the contrapositive of the statement:

For all integers, 𝑎, 𝑏, 𝑐: Show if 𝑎|𝑏 and 𝑎|𝑐 then 𝑎|(𝑏𝑐).



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

Therefore 𝑎|𝑏𝑐



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

By definition of divides, 𝑎𝑥 = 𝑏 and 𝑎𝑦 = 𝑐 for integers 𝑥 and 𝑦.

Multiplying the two equations, we get 𝑎𝑥𝑎𝑦 = 𝑏𝑐

Since 𝑎, 𝑥, 𝑦 are all integers, 𝑥𝑎𝑦 is an integer. Applying the definition of 
divides, we have 𝑎|𝑏𝑐.


