Claim: for all $a, b, c, n \in \mathbb{Z}, n>0: a \equiv b(\bmod n) \rightarrow a+c \equiv b+c(\bmod n)$

Before we start, we must know:

1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

Divides

For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Equivalence in modular arithmetic

Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$. We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

Another Proof

For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.

A bad proof

Claim: if x is positive then $x+5=-x-5$.
$x+5=-x-5$
$|x+5|=|-x-5|$
$|x+5|=|-(x+5)|$
$|x+5|=|x+5|$
$0=0$
This claim is false - if you're trying to do algebra, you need to start with an equation you know (say $x=x$ or $2=2$ or $0=0$) and expand to the equation you want.

More proofs

Show that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then $a c \equiv b d(\bmod n)$.

Step 1: What do the words mean?
Step 2: What does the statement as a whole say?
Step 3: Where do we start?
Step 4: What's our target?
Step 5: Now prove it.

