Claim: for all $a, b, c, n \in \mathbb{Z}, n > 0$: $a \equiv b \pmod{n} \rightarrow a + c \equiv b + c \pmod{n}$	
Before we start, we must know:	
1. What every word in the statement means.	
2. What the statement as a whole means.	
3. Where to start.	Divides
4. What your target is.	For integers x, y we say $x y$ (" x divides y ") iff there is an integer z such that $xz = y$.
Pollev.com/robbie	Equivalence in modular arithmetic
	Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n > 0$. We say $a \equiv b \pmod{n}$ if and only if $n (b - a)$

Another Proof

For all integers, a, b, c: Show that if $a \nmid (bc)$ then $a \nmid b$ or $a \nmid c$.

A bad proof

Claim: if x is positive then x + 5 = -x - 5. x + 5 = -x - 5 |x + 5| = |-x - 5| |x + 5| = | - (x + 5)| |x + 5| = |x + 5| 0 = 0This claim is **false** – if you're trying to do algebra, you need to start with an equation you know (say x = x or 2 = 2 or 0 = 0) and expand to the equation you want.

More proofs

Show that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $ac \equiv bd \pmod{n}$.

Step 1: What do the words mean?

Step 2: What does the statement as a whole say?

Step 3: Where do we start?

Step 4: What's our target?

Step 5: Now prove it.