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How do we know recursion works?

//Assume i is a nonnegative integer

//returns 2^i.

public int CalculatesTwoToTheI(int i){

if(i == 0)

return 1;

else

return 2*CaclulatesTwoToTheI(i-1);

}

Why does CalculatesTwoToTheI(4) calculate 2^4?

Convince the other people in your room 



Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!

1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.

2. Base Case: Show 𝑃(0) i.e. show the base case

3. Inductive Hypothesis: Suppose 𝑃(𝑘) for an arbitrary 𝑘. 

4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get 𝑃 𝑘 → 𝑃(𝑘 + 1))

5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 by the principle of induction. 



More Induction
Induction doesn’t only work for code!

Show that σ𝑖=0
𝑛 2𝑖 = 1 + 2 + 4 +⋯+ 2𝑛 = 2𝑛+1 − 1.



More Induction
Induction doesn’t only work for code!

Show that σ𝑖=0
𝑛 2𝑖 = 1 + 2 + 4 +⋯+ 2𝑛 = 2𝑛+1 − 1.

Let 𝑃 𝑛 be “σ𝑖=0
𝑛 2𝑖 = 2𝑛+1 − 1.”

We show 𝑃(𝑛) holds for all 𝑛 by induction on 𝑛.

Base Case ( )

Inductive Hypothesis:

Inductive Step: 

𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



More Induction
Induction doesn’t only work for code!

Show that σ𝑖=0
𝑛 2𝑖 = 1 + 2 + 4 +⋯+ 2𝑛 = 2𝑛+1 − 1.

Let 𝑃 𝑛 be “σ𝑖=0
𝑛 2𝑖 = 2𝑛+1 − 1.”

We show 𝑃(𝑛) holds for all natural numbers 𝑛 by induction on 𝑛.

Base Case (𝑛 = 0)σ𝑖=0
0 2𝑖 = 1 = 2 − 1 = 20+1 − 1.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.

Inductive Step: We show 𝑃(𝑘 + 1). Consider the summationσ𝑖=0
𝑘+12𝑖 =

2k+1 + σ𝑖=0
𝑘 2𝑖 = 2𝑘+1 + 2𝑘+1 − 1 , where the last step is by IH.

Simplifying, we get: σ𝑖=0
𝑘+1 2𝑖 = 2𝑘+1 + 2𝑘+1 − 1 = 2 ⋅ 2𝑘+1 − 1 =

2 𝑘+1 +1 − 1.

𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



Let’s Try Another Induction Proof

Let 𝑔 𝑛 = ቊ
2 if 𝑛 = 2
𝑔(𝑛 − 1)2 + 3𝑔 𝑛 − 1 if 𝑛 > 2

Prove 𝑔(𝑛) is even for all 𝑛 ≥ 2 by induction on 𝑛.

Let’s just set this one up, we’ll leave the individual pieces as exercises.



Setup

Let 𝑃(𝑛) be “𝑔(𝑛) is even.”

HEY WAIT -- 𝑃(0) isn’t true 𝑔(0) isn’t even defined!

We can move the “starting line”

Change the base case, and then update the IH to have the smallest 
value of 𝑘 assume just the base case.



Setup

Let 𝑃(𝑛) be “𝑔(𝑛) is even.”

We show 𝑃 𝑛 for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case (𝒏 = 𝟐): <todo>

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary k ≥ 2.

Inductive Step: 

<todo>

We conclude 𝑃(𝑘 + 1). Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 2 by the 
principle of induction.



Setup

Let 𝑃(𝑛) be “𝑔(𝑛) is even.”

We show 𝑃 𝑛 for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case (𝒏 = 𝟐): 𝑔 𝑛 = 2 by definition. 2 is even, so we have 𝑃(2).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary k ≥ 2.

Inductive Step: We show 𝑃(𝑘 + 1). Consider 𝑔(𝑘 + 1). By definition of 
𝑔 ⋅ , 𝑔 𝑘 + 1 = 𝑔(𝑘)2 + 3𝑔 𝑘 . By inductive hypothesis, 𝑔(𝑘) is even, 
so it equals 2𝑗 for some integer 𝑗. Plugging in we have:

𝑔 𝑘 + 1 = 2𝑗 2 + 3 2𝑗 = 2 2𝑗2 + 2 3𝑗 = 2(2𝑗2 + 3𝑗).

Since 𝑗 is an integer, 2𝑗2 + 3𝑗 is also an integer, and 𝑔(𝑘 + 1) is even.

Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 2 by the principle of induction.



Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!

1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.

2. Base Case: Show 𝑃(𝑏) i.e. show the base case

3. Inductive Hypothesis: Suppose 𝑃(𝑘) for an arbitrary 𝑘 ≥ 𝑏. 

4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get 𝑃 𝑘 → 𝑃(𝑘 + 1))

5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 ≥ 𝑏 by the principle of 
induction. 



Let’s Try Another Induction Proof

Uniqueness is hard. Let’s just show existence. 

I.e. 

Claim: Every positive integer greater than 1 can be written as a product 
of primes. 

Every positive integer greater than 1 has a unique 

prime factorization.

Fundamental Theorem of Arithmetic



Prime Factorizations

Some examples

12 = 22 ⋅ 3

35 = 5 ⋅ 7

36 = 22 ⋅ 32

7 = 7

Notice, for prime numbers the product is just the one number.



Induction on Primes.

Let 𝑃(𝑛) be “𝑛 can be written as a product of primes.”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case (𝒏 = 𝟐): 2 is a product of just itself. Since 2 is prime, it is written as a 
product of primes. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary integer 𝑘 ≥ 2.

Inductive Step: 
Case 1, 𝑘 + 1 is prime: then 𝑘 + 1 is automatically written as a product of primes.

Case 2, 𝑘 + 1 is composite: 

Therefore 𝑃(𝑘 + 1). 

𝑃(𝑛) holds for all 𝑛 ≥ 2 by the principle of induction. 



We’re Stuck

We can divide 𝑘 + 1 up into smaller pieces (say 𝑠, 𝑡 such that 𝑠𝑡 = 𝑘 + 1
with 2 ≤ 𝑠 < 𝑘 + 1 and 2 ≤ 𝑡 < 𝑘 + 1

Is 𝑃(𝑠) true? Is 𝑃(𝑡) true?

I mean…it would be…

But in the inductive step we don’t have it…

Let’s add it to our inductive hypothesis.



Induction on Primes

Let 𝑃(𝑛) be “𝑛 can be written as a product of primes.”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case (𝒏 = 𝟐): 2 is a product of just itself. Since 2 is prime, it is written as a 
product of primes. 

Inductive Hypothesis:

Inductive Step: 
Case 1, 𝑘 + 1 is prime: then 𝑘 + 1 is automatically written as a product of primes.

Case 2, 𝑘 + 1 is composite: 

Therefore 𝑃(𝑘 + 1). 

𝑃(𝑛) holds for all 𝑛 ≥ 2 by the principle of induction. 



Induction on Primes

Let 𝑃(𝑛) be “𝑛 can be written as a product of primes.”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case (𝒏 = 𝟐): 2 is a product of just itself. Since 2 is prime, it is written as a 
product of primes. 

Inductive Hypothesis: Suppose 𝑃 2 ,… , 𝑃 𝑘 hold for an arbitrary integer 𝑘 ≥ 2.

Inductive Step: 
Case 1, 𝑘 + 1 is prime: then 𝑘 + 1 is automatically written as a product of primes.

Case 2, 𝑘 + 1 is composite: We can write 𝑘 + 1 = 𝑠𝑡 for 𝑠, 𝑡 nontrivial divisors (i.e. 
2 ≤ 𝑠 < 𝑘 + 1 and 2 ≤ 𝑡 < 𝑘 + 1). By inductive hypothesis, we can write 𝑠 as a 
product of primes 𝑝1 ⋅ … 𝑝𝑗 and 𝑡 as a product of primes 𝑞1⋯𝑞ℓ. Multiplying these 
representations, 𝑘 + 1 = 𝑝1⋯𝑝𝑗 ⋅ 𝑞1⋯𝑞ℓ, which is a product of primes.

Therefore 𝑃(𝑘 + 1). 

𝑃(𝑛) holds for all 𝑛 ≥ 2 by the principle of induction. 



Strong Induction

That hypothesis where we assume 𝑃 base case , … , 𝑃(𝑘) instead of just 
𝑃(𝑘) is called a strong inductive hypothesis. 

Strong induction is the same fundamental idea as weak (“regular”) 
induction.

𝑃(0) is true.

And 𝑃 0 → 𝑃(1), so 𝑃 1 .
And 𝑃 1 → 𝑃(2), so 𝑃 2 .
And 𝑃 2 → 𝑃(3), so 𝑃 3 .
And 𝑃 3 → 𝑃(4), so 𝑃 4 .
…

𝑃(0) is true.

And 𝑃 0 → 𝑃(1), so 𝑃 1 .
And [P 0 ∧ 𝑃 1 ] → 𝑃(2), so 𝑃 2 .
And [P 0 ∧ ⋯∧ 𝑃 2 ] → 𝑃(3), so 𝑃 3 .
And[P 0 ∧ ⋯∧ 𝑃 3 ] → 𝑃(4), so 𝑃 4 .
…



Making Induction Proofs Pretty

All of our strong induction proofs will come in 5 easy(?) steps!

1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.

2. Base Case: Show 𝑃(𝑏) i.e. show the base case

3. Inductive Hypothesis: Suppose P b ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 𝑏. 

4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get [P b ∧ ⋯∧ 𝑃(𝑘)] → 𝑃(𝑘 + 1))

5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 ≥ 𝑏 by the principle of 
induction. 



Strong Induction vs. Weak Induction

Think of strong induction as “my recursive call might be on LOTS of 
smaller values” (like mergesort – you cut your array in half)

Think of weak induction as “my recursive call is always on one step 
smaller.”

Practical advice:

A strong hypothesis isn’t wrong when you only need a weak one (but a 
weak one is wrong when you need a strong one). Some people just 
always write strong hypotheses. But it’s easier to typo a strong 
hypothesis.

Robbie leaves a blank spot where the IH is, and fills it in after the step.



Practical Advice

How many base cases do you need?
Always at least one.

If you’re analyzing recursive code or a recursive function, at least one for each base 
case of the code/function.

If you always go back 𝑠 steps, at least 𝑠 consecutive base cases.

Enough to make sure every case is handled.



Let’s Try Another! Stamp Collecting

I have 4 cent stamps and 5 cent stamps (as many as I want of each). 
Prove that I can make exactly 𝑛 cents worth of stamps for all 𝑛 ≥ 12.

Try for a few values.

Then think…how would the inductive step go?



Stamp Collection (attempt)

Define 𝑃(𝑛) “I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.”

We prove 𝑃(𝑛) is true for all integers 𝑛 ≥ 12 by induction on 𝑛.

Base Case:

12 cents can be made with three 4 cent stamps.

Inductive Hypothesis Suppose [maybe some other stuff and] 𝑃(𝑘), for an 
arbitrary 𝑘 ≥ 12.

Inductive Step:

We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 − 3 cents 
exactly with stamps. Adding another 4 cent stamp gives exactly 𝑘 + 1
cents. 



Stamp Collection

Is the proof right?

How do we know 𝑃(13)

We’re not the base case, so our inductive hypothesis assumes 𝑃(12), 
and then we say if 𝑃 9 then 𝑃(13).

Wait a second….

If you go back 𝑠 steps every time, you need 𝑠 base cases. 

Or else the first few values aren’t proven.



Stamp Collection

Define 𝑃(𝑛) to be “I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.”

We prove 𝑃(𝑛) is true for all integers 𝑛 ≥ 12 by induction on 𝑛.

Base Case:

12 cents can be made with three 4 cent stamps.
13  cents can be made with two 4 cent stamps and one 5 cent stamp.
14 cents can be made with one 4 cent stamp and two 5 cent stamps.
15 cents can be made with three 5 cent stamps.

Inductive Hypothesis Suppose P 12 ∧ 𝑃 13 ∧ ⋯∧ 𝑃(𝑘), for an arbitrary 𝑘 ≥ 15.

Inductive Step:

We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 − 3 cents exactly 
with stamps. Adding another 4 cent stamp gives exactly 𝑘 + 1 cents. 



A good last check

After you’ve finished writing an inductive proof, pause.

If your inductive step always goes back 𝑠 steps, you need 𝑠 base cases 
(otherwise 𝑏 + 1 will go back before the base cases you’ve shown). And 
make sure your inductive hypothesis is strong enough.

If your inductive step is going back a varying (unknown) number of 
steps, check the first few values above the base case, make sure your 
cases are really covered. And make sure your IH is strong.



Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!

1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.

2. Base Cases: Show 𝑃 𝑏𝑚𝑖𝑛 , 𝑃 𝑏𝑚𝑖𝑛+1 …𝑃(𝑏𝑚𝑎𝑥) i.e. show the base cases

3. Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ 𝑃 𝑏𝑚𝑖𝑛 + 1 ∧ ⋯∧ 𝑃(𝑘) for an 
arbitrary 𝑘 ≥ 𝑏𝑚𝑎𝑥 . (The smallest value of 𝑘 assumes all bases cases, but 
nothing else)

4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get [P(b𝑚𝑖𝑛) ∧ ⋯∧ 𝑃 𝑘 ] → 𝑃(𝑘 + 1))

5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 ≥ 𝑏𝑚𝑖𝑛 by the principle of 
induction. 



Stamp Collection, Done Wrong

Define 𝑃(𝑛) to be “I can make 𝑛 cents of stamps with just 4 and 5 cent 
stamps.”

We prove 𝑃(𝑛) is true for all integers 𝑛 ≥ 12 by induction on 𝑛.

Base Case:

12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose 𝑃(𝑘), 𝑘 ≥ 12.

Inductive Step:

We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 cents exactly 
with stamps. Replace one of the 4 cent stamps with a 5 cent stamp.

𝑃(𝑛) holds for all 𝑛 by the principle of induction.



Stamp Collection, Done Wrong

What if the starting point doesn’t have any 4 cent stamps?

Like, say, 15 cents = 5+5+5.



Claim: 3|(22𝑛−1) for all natural numbers

[Define 𝑃(𝑛)]

Base Case

Inductive Hypothesis

Inductive Step

[conclusion]



Claim: 3|(22𝑛−1) for all natural numbers

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all natural numbers 𝑛.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 
0 is an integer, 3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: 

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.



Claim: 3|(22𝑛−1) for all natural numbers

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all natural numbers 𝑛.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 0 is an 
integer, 3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: By inductive hypothesis, 3|(22𝑘−1). i.e. there is an integer 𝑗
such that 3𝑗 = 22𝑘 − 1. 

22(𝑘+1) − 1 = 4 ⋅ 22𝑘 − 1

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.

FORCE the expression in your IH to appear



Claim: 3|(22𝑛−1) for all natural numbers

Let 𝑃 𝑛 be “3|(22𝑛−1).” We show 𝑃(𝑛) holds for all natural numbers 𝑛.

Base Case (𝑛 = 0) note that 22𝑛 − 1 = 20 − 1 = 0. Since 3 ⋅ 0 = 0, and 0 is an integer, 
3|(22⋅0−1).

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0

Inductive Step: By inductive hypothesis, 3|(22𝑘−1). i.e. there is an integer 𝑗 such that 3𝑗 =
22𝑘 − 1. 

22(𝑘+1) − 1 = 4(22𝑘 − 1 + 1) − 1 = 4 22𝑘 − 1 + 4 − 1

By IH, we can replace 22𝑘 − 1 with 3𝑗 for an integer 𝑗

22(𝑘+1) − 1 = 4 3𝑗 + 4 − 1 = 3 4𝑗 + 3 = 3 4𝑗 + 1

Since 4𝑗 + 1 is an integer, we meet the definition of divides and we have:

Target: 𝑃(𝑘 + 1), i.e. 3|(22(𝑘+1)−1)

Therefore, we have 𝑃(𝑛) for all 𝑛 ∈ ℕ by the principle of induction.



Claim: 3|(22𝑛−1) for all natural numbers

That inductive step might still seem like magic. 

It sometimes helps to run through examples, and look for patterns:

22⋅0 − 1 = 0 = 3 ⋅ 0

22⋅1 − 1 = 3 = 3 ⋅ 1

22⋅2 − 1 = 15 = 3 ⋅ 5

22⋅3 − 1 = 63 = 3 ⋅ 21

22⋅4 − 1 = 255 = 3 ⋅ 85

22⋅5 − 1 = 1023 = 3 ⋅ 341

The divisor goes from 𝑘 to 4𝑘 + 1
0 → 4 ⋅ 0 + 1 = 1
1 → 4 ⋅ 1 + 1 = 5
5 → 4 ⋅ 5 + 1 = 21

…

That might give us a hint that 4𝑘 + 1 will be 

in the algebra somewhere, and give us 

another intermediate target.



Even more practice

I’ve got a bunch of these 3 piece tiles.

I want to fill a 2𝑛x2𝑛 grid (𝑛 ≥ 1) with the pieces, except for a 1x1 spot 
in a corner.  



Gridding (not a full proof, just intuition)

Base Case: 𝑛 = 1

Inductive hypothesis: Suppose you can tile a 2𝑘x2𝑘 grid, except for a 
corner. 

Inductive step: 2𝑘+1x2𝑘+1, divide into quarters. By IH can tile…


