Proof by Contradiction Skeleton

Claim: p is true.

- Suppose for the sake of contradiction $\neg p$.
- ...
- Then some statement s must hold.
- ...
- And some statement $\neg s$ must hold.
- But s and $\neg s$ is a contradiction. So p must be true.

Graph Example

Can we travel on every road, without going on a road twice?

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.

Where can we find a contradiction?

- Show our list is non inclusive (i.e create a different prime number)
- Show one of the numbers in our list is not prime
- Create a contradiction with facts about prime factorization
- Show 1 = 2
- Show p is odd and even at the same time
- Proof by cases with a mix of the above

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:

Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q . This means that $q \% p_{i}=0$.
Also, notice that $\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}$ using the definition of q , which gives us:

$$
\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}
$$

In both cases, this is a contradiction! So, there must be infinitely many primes.

