

Proof By Contradiction

In real life!

- Claim: My Tire is Leaking
- Suppose that this tire was not leaking
- This means the tire pressure should be constant
- I observe the pressure is dropping at a moderate rate
- But there should be constant pressure if it was not leaking
- Therefore, it must be leaking

Proof by Contradiction Skeleton

Claim: p is true.

- Suppose for the sake of contradiction $\neg p$.

```
Suppose my tire is not leaking
```

- Then some statement s must hold.
- And some statement $\neg s$ must hold.

The tire pressure is decreasing

- But s and $\neg s$ is a contradiction. So p must be true.

Why does this work?

Let's say the claim you are trying to prove is p.
A proof by contradiction shows the following implication:

$$
\neg p \rightarrow \text { False }
$$

Why does this implication show p ?

Hint think contrapositive

The contrapositive is True $\rightarrow p$ which simplifies to just p.
This means that by proving $\neg p \rightarrow$ False, you have proved p is True!

Graph Example

Can we travel on every road, without going on a road twice?

$$
\begin{aligned}
& \text { There is no path, let's } \\
& \text { prove it! }
\end{aligned}
$$

Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once Proof: Suppose that it is possible to travel on every road visiting each road exactly once.
Consider how many times each vertex would be passed through on this path.

However [] is a contradiction!
Therefore, it must be impossible to visit every road exactly once

We enter and exit a landmark

Graph Example

We enter and exit a landmark

Notice that this means there are an even number of roads that we drove on connected to this landmark

We enter and exit a landmark --------1

Even if we go through it again on new roads, this holds

We Start at the Landmark

Notice we drove on only one road, (as we started in the landmark)
making it have an odd number of roads that connect to it

We End at the Landmark

Notice we drove on only one road, (as we ended in the landmark) making it have an odd number of roads that connect to it

Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once
Proof: Suppose that it is possible to travel on every road visiting each road exactly once.
Consider how many times each landmark would be passed through on this path.
As we observed, all of the landmarks on our path must have an even number of roads, except for the starting and ending one, making us have exactly 2 landmarks with an odd number of connecting roads.

However [] is a contradiction!
Therefore, it must be impossible to visit every road exactly once

Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once
Proof: Suppose that it is possible to travel on every road visiting each road exactly once.
Consider how many times each landmark would be passed through on this path.
As we observed, all of the landmarks on our path must have an even number of roads, except for the starting and ending one, making us have exactly 2 landmarks with an odd number of connecting roads.

However, our graph has 4 landmarks with an odd number of roads coming out of it.

However [] is a contradiction!
Therefore, it must be impossible to visit every road exactly once

Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once
Proof: Suppose that it is possible to travel on every road visiting each road exactly once.
Consider how many times each landmark would be passed through on this path.
As we observed, all of the landmarks on our path must have an even number of roads, except for the starting and ending one, making us have exactly 2 landmarks with an odd number of connecting roads.

However, our graph has 4 landmarks with an odd number of roads coming out of it.

But since 2 is not 4, this is a contradiction!
Therefore, it must be impossible to visit every road exactly once

Proof by Contradiction Examples

Proof By Contradiction

If a^{2} is even, then a is even

Claim: $\sqrt{2}$ is irrational (i.e not rational)

Proof:

Proof By Contradiction

If a^{2} is even, then a is even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational

But [] IS a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational. By definition ional, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common factor)

But [] is a contradiction! Thus, we can

What is "Without Loss of Generality"?

You can use this when it looks like you are introducing a new assumption, but you are not, and the claim is still general. Only use if it would be immediately obvious to the reader why it is the case

In this case: if s and t share a factor other than 1, i.e k, we can just cancel out their common factor and continue the proof. (i.e $\frac{s^{\prime} k}{t \prime k}=\frac{s}{t}$)

Another example:
Let x, y be integers; without loss of generality, assume $x \geq y$.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is \mathbf{s}, t greatest common factor)

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is \mathbf{s}, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is \mathbf{s}, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$
Thus: $2 t^{2}=s^{2}$

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$
Thus: $2 t^{2}=s^{2}$ So s^{2} is even, making s even by our lemma. This means that $s=2 k$ for some integer k

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$
Thus: $2 t^{2}=s^{2}$ So s^{2} is even, making s even by our lemma. This means that $s=2 k$ for some integer k Squaring both sides, we get $s^{2}=4 k^{2}$

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$
Thus: $2 t^{2}=s^{2}$ So s^{2} is even, making s even by our lemma. This means that $s=2 k$ for some integer k Squaring both sides, we get $s^{2}=4 k^{2}$, which we can plug back into $2 t^{2}=s^{2}$ to get $2 \mathrm{t}^{2}=4 k^{2}$

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$
Thus: $2 t^{2}=s^{2}$ So s^{2} is even, making s even by our lemma. This means that $s=2 k$ for some integer k
Squaring both sides, we get $s^{2}=4 k^{2}$, which we can plug back into $2 t^{2}=s^{2}$ to get $2 \mathrm{t}^{2}=4 k^{2}$
Dividing both sides by two, we get $\mathrm{t}^{2}=2 k^{2}$

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$
Thus: $2 t^{2}=s^{2}$ So s^{2} is even, making s even by our lemma. This means that $s=2 k$ for some integer k
Squaring both sides, we get $s^{2}=4 k^{2}$, which we can plug back into $2 t^{2}=s^{2}$ to get $2 \mathrm{t}^{2}=4 k^{2}$
Dividing both sides by two, we get $\mathrm{t}^{2}=2 k^{2}$, making t^{2} is even, making t even by our lemma.

But [] is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof By Contradiction

If a^{2} is even, then a is
even

Claim: $\sqrt{2}$ is irrational (i.e not rational)
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=\frac{s}{t}$
Without loss of generality, suppose that $\mathbf{s , t}$ are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common factor)
$\sqrt{2}=\frac{s}{t}$
$2=\frac{s^{2}}{t^{2}}$
Thus: $2 t^{2}=s^{2}$ So s^{2} is even, making s even by our lemma. This means that $s=2 k$ for some integer k
Squaring both sides, we get $s^{2}=4 k^{2}$, which we can plug back into $2 t^{2}=s^{2}$ to get $2 \mathrm{t}^{2}=4 k^{2}$
Dividing both sides by two, we get $\mathrm{t}^{2}=2 k^{2}$, making t^{2} is even, making t even by our lemma.
But if both s and t are even, they must have a common factor of 2 . But we said that the fraction $\frac{s}{t}$ was irreducible.
This is a contradiction! Thus, we can conclude that $\sqrt{2}$ is irrational.

Proof by Contradiction

Proof by contradiction is a strategy for proving statements of any form.

- The general strategy to prove p is to assume $\neg p$ and derive False. Examples:
- The strategy to prove $p \rightarrow q$ is to assume $p \wedge \neg q$ and derive False.
- The strategy to prove $p \vee q$ is to assume $\neg p \wedge \neg q$ and derive False.
- The strategy to prove $\forall x(P(x))$ is to assume $\exists x(\neg P(x))$ and derive False.
- The strategy to prove $\exists x(P(x))$ is to assume $\forall x(\neg P(x))$ and derive False.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Where can we find a contradiction?

- Show our list is non inclusive (i.e create a different prime number)
- Show one of the numbers in our list is not prime
- Create a contradiction with facts about prime factorization
- Show 1 = 2
- Show p is odd and even at the same time
- Proof by cases with a mix of the above

But [] is a contradiction! So, there must be infinitely many primes.

Proof by Contradiction: Remarks

- Unlike other proof techniques, we don't know where we're going. We're trying to find any contradiction. That can make it harder.
- Contradiction is a sledge-hammer. It can be used to prove many things. But it makes a mess.
- You can find a contradiction directly with your assumption

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q .

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q . This means that $q \% p_{i}=0$.

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q . This means that $q \% p_{i}=0$.
Also, notice that $\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}$ using the definition of q ,

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q. This means that $q \% p_{i}=0$.
Also, notice that $\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}$ using the definition of q , which gives us:

$$
\mathrm{q} \% p_{i}=
$$

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q. This means that $q \% p_{i}=0$.
Also, notice that $\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}$ using the definition of q , which gives us:

$$
\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}=
$$

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q . This means that $q \% p_{i}=0$.
Also, notice that $\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}$ using the definition of q , which gives us:

$$
\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}=\left(p_{1} \cdot \ldots p_{i} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}
$$

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q . This means that $q \% p_{i}=0$.
Also, notice that $\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}$ using the definition of q , which gives us:

$$
\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}=\left(p_{1} \cdot \ldots p_{i} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}=1
$$

But [] is a contradiction! So, there must be infinitely many primes.

Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $\mathrm{q}=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
Case 1: q is prime:
Notice that q is prime and must be larger that every prime in $p_{1}, p_{2}, \ldots, p_{k}$. But every prime was in the list, therefore this is a contradiction!
Case 2: q is not prime (i.e composite):
Since q is composite, we know that some prime p_{i} must divide q . This means that $q \% p_{i}=0$.
Also, notice that $\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}$ using the definition of q , which gives us:
$\mathrm{q} \% p_{i}=\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}=\left(p_{1} \cdot \ldots p_{i} \cdot \ldots \cdot p_{k}\right)+1 \% p_{i}=1$
This means that $q \% p_{i}$ equals both 1 and 0 , which is impossible!
In both cases, this is a contradiction! So, there must be infinitely many primes.

Bonus Proof!

Claim: if a^{2} is even, than a is even.
Proof:
Suppose for the sake of contradiction that a^{2} is even and a is odd for some integer a.
This means that $\mathrm{a}=2 k+1$ for some k .
Substituting this in, we have $a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$
Since $2 k^{2}+2 k$ is an integer, we have that a^{2} is odd!
This is a contradiction however as a^{2} cannot be both even and odd. Therefore through proof by contradiction, if a^{2} is even, than a is even.

