
Proof By Contradiction



In real life!

• Claim: My Tire is Leaking

• Suppose that this tire was not 

leaking

• This means the tire pressure should 

be constant

• I observe the pressure is dropping 

at a moderate rate

• But there should be constant 

pressure if it was not leaking

• Therefore, it must be leaking



Proof by Contradiction Skeleton

Claim: p is true.

• Suppose for the sake of contradiction ¬𝑝.

• …

• Then some statement 𝑠 must hold.

• …

• And some statement ¬𝑠 must hold.

• But 𝑠 and ¬𝑠 is a contradiction. So 𝑝 must be true.

Suppose my tire is not leaking

The tire pressure must be constant

The tire pressure is decreasing

My Tire is leaking

My tire is leaking



Why does this work?

Let’s say the claim you are trying to prove is 𝑝.

A proof by contradiction shows the following implication:

¬𝑝 → 𝐹𝑎𝑙𝑠𝑒

Why does this implication show 𝑝?

The contrapositive is 𝑇𝑟𝑢𝑒 → 𝑝 which simplifies to just 𝑝. 

This means that by proving ¬𝑝 → 𝐹𝑎𝑙𝑠𝑒, you have proved 𝑝 is True!

Hint think 

contrapositive



Graph Example

Can we travel on every road, without going on a road twice?

There is no path, let’s 

prove it!

Start

Stuck!



Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once

Proof: Suppose that it is possible to travel on every road visiting each road exactly once.

Consider how many times each vertex would be passed through on this path.

However [] is a contradiction! 

Therefore, it must be impossible to visit every road exactly once



We enter and exit a landmark



Graph Example



We enter and exit a landmark

Notice that this means there are an 

even number of roads that we drove 

on connected to this landmark



We enter and exit a landmark

Even if we go through it again on new 

roads, this holds



We Start at the Landmark

Notice we drove on only one road, (as we started in the landmark) 

making it have an odd number of roads that connect to it



We End at the Landmark

Notice we drove on only one road, (as we ended in the landmark) 

making it have an odd number of roads that connect to it



Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once

Proof: Suppose that it is possible to travel on every road visiting each road exactly once.

Consider how many times each landmark would be passed through on this path.

As we observed, all of the landmarks on our path must have an even number of roads, except for the 
starting and ending one, making us have exactly 2 landmarks with an odd number of  connecting 
roads.

However [] is a contradiction! 

Therefore, it must be impossible to visit every road exactly once



Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once

Proof: Suppose that it is possible to travel on every road visiting each road exactly once.

Consider how many times each landmark would be passed through on this path.

As we observed, all of the landmarks on our path must have an even number of roads, except for the 
starting and ending one, making us have exactly 2 landmarks with an odd number of  connecting 
roads.

However, our graph has 4 landmarks with an odd number of roads coming out of it.

However [] is a contradiction! 

Therefore, it must be impossible to visit every road exactly once



Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once

Proof: Suppose that it is possible to travel on every road visiting each road exactly once.

Consider how many times each landmark would be passed through on this path.

As we observed, all of the landmarks on our path must have an even number of roads, except for the 
starting and ending one, making us have exactly 2 landmarks with an odd number of  connecting 
roads.

However, our graph has 4 landmarks with an odd number of roads coming out of it.

But since 2 is not 4, this is a contradiction! 

Therefore, it must be impossible to visit every road exactly once



Proof by Contradiction Examples



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even

Notice target is 

unknown



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is even
If 𝑎2 is even, then a is 

even



What is “Without Loss of Generality”?

You can use this when it looks like you are introducing a new 
assumption, but you are not, and the claim is still general. Only use if it 
would be immediately obvious to the reader why it is the case

In this case: if s and t share a factor other than 1, i.e k, we can just cancel 

out their common factor and continue the proof. (i.e
𝑠′𝑘

𝑡′𝑘
=

𝑠

𝑡
)

Another example:

Let x,y be integers; without loss of generality, assume 𝑥 ≥ 𝑦.



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

Thus: 2𝑡2 = 𝑠2

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

Thus: 2𝑡2 = 𝑠2 So 𝑠2 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

Thus: 2𝑡2 = 𝑠2 So 𝑠2 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘

Squaring both sides, we get 𝑠2 = 4𝑘2

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

Thus: 2𝑡2 = 𝑠2 So 𝑠2 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘

Squaring both sides, we get 𝑠2 = 4𝑘2, which we can plug back into 2𝑡2 = 𝑠2 to get 2t2 = 4𝑘2

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

Thus: 2𝑡2 = 𝑠2 So 𝑠2 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘

Squaring both sides, we get 𝑠2 = 4𝑘2, which we can plug back into 2𝑡2 = 𝑠2 to get 2t2 = 4𝑘2

Dividing both sides by two, we get t2 = 2𝑘2

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

Thus: 2𝑡2 = 𝑠2 So 𝑠2 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘

Squaring both sides, we get 𝑠2 = 4𝑘2, which we can plug back into 2𝑡2 = 𝑠2 to get 2t2 = 4𝑘2

Dividing both sides by two, we get t2 = 2𝑘2, making 𝑡2 is even, making 𝑡 even by our lemma. 

But [] is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof By Contradiction

Claim: 2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =
𝑠

𝑡

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 

factor)

2 =
𝑠

𝑡

2 =
𝑠2

𝑡2

Thus: 2𝑡2 = 𝑠2 So 𝑠2 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘

Squaring both sides, we get 𝑠2 = 4𝑘2, which we can plug back into 2𝑡2 = 𝑠2 to get 2t2 = 4𝑘2

Dividing both sides by two, we get t2 = 2𝑘2, making 𝑡2 is even, making 𝑡 even by our lemma. 

But if both 𝑠 and 𝑡 are even, they must have a common factor of 2. But we said that the fraction 
𝑠

𝑡
was irreducible.

This is a contradiction! Thus, we can conclude that 2 is irrational.

If 𝑎2 is even, then a is 

even



Proof by Contradiction

Proof by contradiction is a strategy for proving statements of any form.

• The general strategy to prove 𝑝 is to assume ¬𝑝 and derive False.

Examples:

• The strategy to prove 𝑝 → 𝑞 is to assume 𝑝 ∧ ¬𝑞 and derive False.

• The strategy to prove 𝑝 ∨ 𝑞 is to assume ¬𝑝 ∧ ¬𝑞 and derive False.

• The strategy to prove ∀𝑥(𝑃 𝑥 ) is to assume ∃𝑥 ¬𝑃 𝑥 and derive False.

• The strategy to prove ∃𝑥(𝑃 𝑥 ) is to assume ∀𝑥(¬𝑃 𝑥 ) and derive False.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

But [] is a contradiction! So, there must be infinitely many primes.

Where can we find a contradiction?

• Show our list is non inclusive (i.e create a different prime number)

• Show one of the numbers in our list is not prime

• Create a contradiction with facts about prime factorization

• Show 1 = 2

• Show p is odd and even at the same time

• Proof by cases with a mix of the above



Proof by Contradiction: Remarks

• Unlike other proof techniques, we don’t know where we’re going. 

We’re trying to find any contradiction. That can make it harder.

• Contradiction is a sledge-hammer. 

It can be used to prove many things. But it makes a mess.

• You can find a contradiction directly with your assumption



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

Consider the number q = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

Consider the number q = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime:

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

Consider the number q = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime:

Notice that q is prime and must be larger that every prime in 𝑝1, 𝑝2, … , 𝑝𝑘 . But every prime was in the list, therefore 
this is a contradiction!

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

Consider the number q = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime:

Notice that q is prime and must be larger that every prime in 𝑝1, 𝑝2, … , 𝑝𝑘 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

Consider the number q = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime:

Notice that q is prime and must be larger that every prime in 𝑝1, 𝑝2, … , 𝑝𝑘 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):

Since q is composite, we know that some prime 𝑝𝑖 must divide q.

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .
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Case 1: 𝑞 is prime:

Notice that q is prime and must be larger that every prime in 𝑝1, 𝑝2, … , 𝑝𝑘 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):

Since q is composite, we know that some prime 𝑝𝑖 must divide q. This means that 𝑞 % 𝑝𝑖 = 0. 

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .
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Case 1: 𝑞 is prime:

Notice that q is prime and must be larger that every prime in 𝑝1, 𝑝2, … , 𝑝𝑘 . But every prime was in the list, therefore 
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Case 2: 𝑞 is not prime (i.e composite):

Since q is composite, we know that some prime 𝑝𝑖 must divide q. This means that 𝑞 % 𝑝𝑖 = 0. 

Also, notice that q % 𝑝𝑖 = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1 % 𝑝𝑖 using the definition of q, 

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .
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Also, notice that q % 𝑝𝑖 = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1 % 𝑝𝑖 using the definition of q, which gives us:

q % 𝑝𝑖 =

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .
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But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

Consider the number q = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime:

Notice that q is prime and must be larger that every prime in 𝑝1, 𝑝2, … , 𝑝𝑘 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):

Since q is composite, we know that some prime 𝑝𝑖 must divide q. This means that 𝑞 % 𝑝𝑖 = 0. 
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Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

Consider the number q = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime:

Notice that q is prime and must be larger that every prime in 𝑝1, 𝑝2, … , 𝑝𝑘 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):

Since q is composite, we know that some prime 𝑝𝑖 must divide q. This means that 𝑞 % 𝑝𝑖 = 0. 

Also, notice that q % 𝑝𝑖 = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1 % 𝑝𝑖 using the definition of q, which gives us:

q % 𝑝𝑖 = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1% 𝑝𝑖 = 𝑝1 ⋅ … 𝑝𝑖 ⋅ … ⋅ 𝑝𝑘 + 1% 𝑝𝑖 = 1

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘 .

Consider the number q = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime:

Notice that q is prime and must be larger that every prime in 𝑝1, 𝑝2, … , 𝑝𝑘 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):

Since q is composite, we know that some prime 𝑝𝑖 must divide q. This means that 𝑞 % 𝑝𝑖 = 0. 

Also, notice that q % 𝑝𝑖 = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1 % 𝑝𝑖 using the definition of q, which gives us:

q % 𝑝𝑖 = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1% 𝑝𝑖 = 𝑝1 ⋅ … 𝑝𝑖 ⋅ … ⋅ 𝑝𝑘 + 1% 𝑝𝑖 = 1

This means that 𝑞 % 𝑝𝑖 equals both 1 and 0, which is impossible!

In both cases, this is a contradiction! So, there must be infinitely many primes.



Bonus Proof!

Claim: if 𝑎2 is even, than 𝑎 is even.

Proof:

Suppose for the sake of contradiction that 𝑎2 is even and 𝑎 is odd for some integer a.

This means that a = 2𝑘 + 1 for some k. 

Substituting this in, we have 𝑎2 = 2𝑘 + 1 2 = 4𝑘2 + 4𝑘 + 1 = 2 2𝑘2 + 2𝑘 + 1

Since 2𝑘2 + 2𝑘 is an integer, we have that 𝑎2 is odd! 

This is a contradiction however as 𝑎2 cannot be both even and odd. Therefore through proof by contradiction, if 𝑎2 is even, 
than 𝑎 is even.


