Try it!

Let $A=\{1,2,3,4,5\}$
$B=\{1,2,5\}$

Is $A \subseteq A$?
Is $B \subseteq A$?
Is $A \subseteq B$?
Is $\{1\} \in A$?
Is $1 \in A$?

A proof!

What's the analogue of DeMorgan's Laws...
$\bar{A} \cap \bar{B}=\overline{A \cup B} \quad A=B \equiv \forall x(x \in A \leftrightarrow x \in B) \equiv A \subseteq B \wedge B \subseteq A$
$\bar{A} \cap \bar{B} \subseteq \overline{A \cup B}$
$\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$

Recursive Definitions of Sets

Q1: What is this set?
Basis Step: $6 \in S, 15 \in S$
Recursive Step: If $x, y \in S$ then $x+y \in S$

Q2: Write a recursive definition for the set of powers of $3\{1,3,9,27, \ldots\}$
Basis Step:
Recursive Step:

Extra Set Practice

Show $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
Proof:
Start with the outline. What two things do we need to show? For each, where do we start and end?

