Recursive Definitions of Sets

Q1: What is this set?
Basis Step: $6 \in S, 15 \in S$
Recursive Step: If $x, y \in S$ then $x+y \in S$

Q2: Write a recursive definition for the set of powers of $3\{1,3,9,27, \ldots\}$
Basis Step:
Recursive Step:

Structural Induction

Let $P(x)$ be " x is divisible by 3."
We show $P(x)$ holds for all $x \in S$ by structural induction.
Base Cases:

Inductive Hypothesis:
Inductive Step:

We conclude $P(x) \forall x \in \mathrm{~S}$ by the principle of induction.

Structural Induction Template

1. Define $P()$ State that you will show $P(x)$ holds for all $x \in S$ and that your proof is by structural induction.
2. Base Case: Show $P(b)$
[Do that for every b in the basis step of defining S]
3. Inductive Hypothesis: Suppose $P(x)$
[Do that for every x listed as already in S in the recursive rules].
4. Inductive Step: Show $P()$ holds for the "new elements."
[You will need a separate step for every element created by the recursive rules].
5. Therefore $P(x)$ holds for all $x \in S$ by the principle of induction.

Binary Trees

Basis: A single node is a rooted binary tree.

Recursive Step: If T_{1} and T_{2} are rooted binary trees with roots r_{1} and r_{2}, then a tree rooted at a new node, with children r_{1}, r_{2} is a binary tree.

