\ \

Structural Induction
and Regular Expressions

Warm up:
C\éVhat is the following recursively-defined set?
asis Step:4 €S, 5€ S
Recurswe Step: If x € S and y €ESthenx—y€ 53 7’[

CSE 311 Winter 2024
Lecture 17

Trees!

More Structural Sets

Binary Trees are another common source of structural induction.

Basis A single node is a rooted binary tree. @

ecurswe Step: @ g ngare rooted binary trees with roots r; and ry,
then a tree roote node, with children ry, r, is a binary tree.

Functions on Binary Trees

Size(@®)
size(
height(:) =0

height(;’\Z—) = T+max(height(T;),height(T,))

1

) = size(T;) + size(T,) + 1
—_—> ——

>

Claim

We want to show that trees of a certain height can't have too many
nodes. Specifically our claim is this:

For all trees T, size(T) < 2height(T)+1 _ q

%\/—_’V

Take a moment to absorb this formula, then we'll do induction!

Structural Induction on Binary Trees

Let P(T) be "size(T) < 2he¢ight(M+1 _ 1 We show P(T) for all binary
trees T by structural induction.

Base Case: Let T =@. size(T)=1 and height(T) = 0, so size(T)=1< 2 —
1 = 20+1 _ 1 = Zheight(T)+1 1

Inductive Hypothesis: Suppose P(L) and P(R) hold for arbitrary trees
L,R. LetT bethet

Inductive step: Figure out, (T) what we must show (2) a formula for

height and a formula for size of T~
o~

e

Structural Induction on Binary Trees (cont.)

et P(T) bq(;;size(T) é Zhe"ghtmﬂi :'> We show P(T) for all binary trees T by
structural in :
T = .

9] Sar)=ied

R
height(T)=1 + height(L), height(R |
.—L(\) t max{hel (L), height()}(
size(T)=1 +size(L)+size(R) -

So P(T) holds, and we have P(T) for all binary trees T by the principle of
induction.

How do heights compare?

It L is taller than R? It L, g same height? If R |s taller than L7

1Y
R L

\\Q/L?J’Y\ d’\ CM\/(\AC\/\ L\ hel t(@
\/\

helghtm\

1+max(he|ght helght T;))

Tee—

How do heights compare?

It L is taller than R? It L, R same height? If R is taller than L?

height(T) helght(L) +1 height(T) >height®

height(T) >height(R) + 1 heigh height(T) =height(R) ¥ 1_
\,_,/ ~. W _

?lln al casem T)=height(L}}€ height(T)=height(R)+) |

height(T) helght(L) +1

Structural Induction on Binary Trees (cont.)

Let P(T) be “size(T) @. We show P(T) for all binary trees T by structural
induction. Ve ?&A(Ly_‘_ \

T =)

helght(T) 1+ max{helght(L) heig f-—/’\’f_\—/
size(T)= 1 +size(L)+size(R)

size(T)=14size(L)+size(R) < Z’leight(‘q)+1 —1 (by IH)
< pheight()+1 4 9 elght(R)+ I’]C6| Ts) —
g 2height(T) 4 pheight(T) _ 1 :@‘ghtm“ 1)(T taller than subtrees)

So P(T) holds, and we > have P(T) o P(T) for all binary trees T by the principle of induction.

™

Structural Induction Template

FDeﬁne P() State that you will show P(x) holds for all x € § and that
your proof is by structural induction. ——

2. Base Case: Show P(b)
[Do that for every b in the basis step of defining S]

3. Inductive Hypothesis: Suppose P(x)
[Do that for every x listed as already in S in the recursive rules].

4. Inductive Step: Show P() holds for the "new elements.”
[You will need a separate step for every element created by the recursive rules].

C 5. Therefore P(x) holds for all x € S by the principle of induction.

I~ Structural Induction on Strings

T ——,

Strings Zﬁ&\é\(i

g is "the empty string”

The string with 0 characters —“” in Java (notnull!)

. -

Basis: € € X7,

o~ 7
wa means the string of w with the character a appended.

You'll also see w - a (a - to mean “concatenate” i.e. + in Java)

Functions on Strings

Since strings are defined recursively, most functions on strings are as well.
ength:
len(g)=0;

Ien(wagen(w)ﬂ forwex*,a€ex

Reversal: ¥ ™ =

R .
et = ¢
(wa)X = awf forw € T*, a € X
Concatenation

x-e=xforallx ex*
x-(wa)=(x-w)aforw €X*a€X

Number of ¢'s in a string

#.(e)=0
#. chz#cw + 1 forw € Z7;
#.(wa) =#.(w) forw e x*,a e X\ {c}.

Claim fbizaﬁjyye ¥ len(x;y)=len(x) + len(y).
~— T —

Let P(y) be "for all x € £* len(x-y)=len(x) + len(y). “

———

S - — —
% -'".ﬁ\\

v CorceT
Notice the strangeness of this P() there is a “for all x“ inside the

definition of P(y). >

> - 9&~ (w . - = _
That means we'll have to mtroauceg; arbitrary x as part of the base

case and the inductive step!

Claim for all x,y € Z* len(x-y)=len(x) + len(y).

@(L\J_et P(y) be “len(x-y)=len(x) + len(y) for all x € Z*.“
We prove P(y) for all x € £* by structural induction.

&\Base Case:
Inductive Hypothesis
Inductive Step:

We conclude that P(y) holds for all string y by the prmople of mductlon
Unwrapping the definition of P, we get VxVy € Z* len(xy)=len(x)+len(y

requwe@v <\@m(’>(DERAPACSE: \czm({)

Claim for all x,y € £* len(x-y)=len(x) + len(y).

Let P(y) be “len(x-y)=len(x) + len(y) for all x € Z*.“
We prove P(y) for all x € £* by structural induction.
Base Case:det x be an arbitrary st@ len(x - €)=len(x)

=len(x)+0=Ien(x)+ten(e) oo~ ==

Inductive T—Iypothemuppose P(w) for an arbitrary string w.
Inductive Step: - D

We conclude that P(y) holds for all strirgvg }é by the principle of induction.
Unwrapoi:)mg the definition of P, we get VxVy € X* len(xy)=Ilen(x)+len(y), as
required.

Claim for all x,y € £* len(x-y)=len(x) + len(y).

Let P(y) be “len(x-y)=len(x) + len(y) for all x € Z*.“
We prove P(y) for all x € £* by structural induction.

Base Case: Let x be an arbitrary string, len(x - €)=len(x)
=len(x)+0=len(x)+len(e)

Inductive Hypothesis: Suppose P(w) for an arbitrary string w.

Inductive Step: Let y =wa for an arbitrary a € Z. We show P(y). Let x be an
arbitrary strmg = — —_—

——

Therefore len(xy |e£ + Ien(y), as required.

We conclude that P(y) holds Tor all strlrgvg ‘)v/’ by the principle of induction.
Unwrap Oi:)mg the def|n|t|on of P, we get VxVy € X* len(xy)=len(x)+len(y), as
require

Claim for all x,y € £* len(x-y)=len(x) + len(y).

Let P(y) be “len(x-y)=len(x) + len(y) for all x € £*.
We prove P(y) for all x € £* by structural induction.

Base Case: Let x be an arbitrary string, len(x - €)=len(x)
=len(x)+0=len(x)+len(¢)

Inductive Hypothesis: Suppose P(w) for an arbitrary string w.
Inductive Step: Let y = wa for an arbitrary a € . We show P(y). Let x be an arbitrary string.
len(xy)=len(xwa) =len(xw)+1 (by definition of len)
=len(x) + len(w) + 1 (by IH)
=len(x) + len(wa) (by definition of len)
Therefore, len(xy)=len(x) + len(y), as required.

We conclude that P(y) holds for all string ['y by the principle of induction. Unwrapping the
definition of P, we get VxVy € * len(xy)=len(x)+len(y), as required.

Why all those arbitraries?

P(¢) is a for-all statement, introduce

arbitrary variable to show for-all.

Let P(y) be “len(x-y)=len(x) + len(y) for all x € £*.
We prove P(y) for all x € Z* by structural indugiss#. Needs to be arbitrary because

i : it’s in the IH (inducti ldn’t
Base Case: Let x be an arbitrary string it’s in the IH (induction wouldn

=len(x)+0=len(x)+len(¢)
Inductive Hypothesis: Suppose P(w) for an arbitrary string w.
Inductive Step: Let y = wa for an arbitrary a € £. We show P(y). Let x be an arbitrary string.

len(xy)=len(xwa) =len(xw)+1 (by definition of len) [FiEEAEIEEERE T RS
X“ so we need to argue for

:Ien(x) + Ien(w) + 1 (by IH) every d.

=len(x) + len(wa) (by definition of len) P(y) is a for-all statement,
introduce arbitrary variable to

show “all strings” otherwise)

Therefore, len(xy)=len(x) + len(y), as required.

show for-all.

We conclude that P(y) holds for all strings y (bg/ the principle of induction. Unwrapping the
X

definition of P, we get VxVy € * len(xy)=len(x)+len(y), as required.

‘ A few last comments

What does the inductive step look like?

Here's a recursively-defined set:

Basiss0 €T and5€T

Recursive: It x,y e Tthenx+y €T andx —y €T.

Let P(x) be "5|x"

What does the inductive step look like?

Well there's two recursive rules, so we have two things to show

Just the IS (you still need the other steps)

Let t be an arbitrary element of T not covered t’}y the base case. By the
exclusionrulet =x+yort=x—yforx,y€eT.

Inductive hypothesis: Suppose P(x) and P(y) hold.
Casel.t=x+y
By IH 5|x and 5|y so 5a = x and 5b = y for integers a, b.

Adding, we get x + y = 5a + 5b = 5(a + b). Since a, b are integers, sois a + b,
and P(x + y), i.e. Peé), holds.

Case2:t=x—y
By IH 5|x and 5|y so 5a = x and 5b = y for integers a, b.

Subtracting, we get x —y = 5a — 5b = 5(a — b). Since a, b are integers, sO is
a—b,andP(x —y), i.e., P(t), holds.

In all cases, we have P(t). By the principle of induction, P(x) holds forall x € T.

If you don't have a recursively-defined set

You won't do structural induction.
You can do weak or strong induction though.

For example, Let P(n) be “for all elements of § of “size” n <something>
1S true”

To prove “for all x € S of size n..." you need to start with “let x be an
arbitrary element of size k + 1 in your IS.

You CAN'T start with size k and “build up” to an arbitrary element of
size k + 1 it isn't arbitrary.

Part 3 of the course!

Course Outline

Symbolic Logic (training wheels)
Just make arguments in mechanical ways.

Set Theory/Number Theory (bike in your backyard)

Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments

But now with objects you haven't used before.
A first taste of how we can argue rigorously about computers.

First up: reqular expressions, context free grammars, automata — understand these
‘simpler computers”

Soon: what these simple computers can do
Then: what simple computers can't do.

Last week: A problem our computers cannot solve.

| The definitions for Friday

Regular Expressions

| have a giant text document. And | want to find all the email addresses
inside. What does an email address look like?

[some letters and numbers] @ [more letters] . [com, net, or edul]

We want to ctrl-f for a pattern of strings rather than a single string

Languages

A set of strings is called a language.

¥* is a language

ne set of all binary strings of even length” is a language.
ne set of all palindromes” is a language.

ne set of all English words” is a language.

ne set of all strings matching a given pattern” is a language.

Regular Expressions

Basis:

¢ 1s a regular expression. The empty string itself matches the pattern (and nothing
else does).

@ is a regular expression. No strings match this pattern.

a is a regular expression, for any a € Z (i.e. any character). The character itself
matching this pattern.

Recursive
If A, B are regular expressions then (A U B) is a regular expression
matched by any string that matches A or that matches B [or both]).
If A, B are regular expressions then AB is a regular expression.
matched by any string x such that x = yz, y matches A and z matches B.
If Ais a regular expression, then A* is a reqular expression.
matched by any string that can be divided into 0 or more strings that match A.

Regular Expressions

(a U bc)

o(ou 1)1

(0OU 1)*

‘ Extra Practice

Induction: Hats!

You have n people in a line (n = 2). Each of them wears either a purple
hat or a . The person at the front of the line wears a purple hat.
The person at the back of the line wears a gold hat.

Show that for every arrangement of the line satisfying the rule above,
there is a person with a purple hat next to someone with a gold hat.

Yes, this is kinda obvious. | promise this is good induction practice.

Yes, you could argue this by contradiction. | promise this is good
induction practice.

Induction: Hats!

Define P(n) to be “in every line of n people with gold and purple hats, with a
purple hat at one end and a gold hat at the other, there is a person with a
purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.
Base Case:n = 2

Inductive Hypothesis:

Inductive Step:

By the principle of induction, we have P(n) for all n > 2

Induction: Hats!

Define P?n) to be "in every line of n people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider an arbitrary line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.
By the principle of induction, we have P(n) for all n > 2

Induction: Hats!

Define P?n) to be "in every line of n people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider an arbitrary line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Case 1. There is someone with a purple hat next to the person in the gold hat at one end. Then those
people are the required adjacent opposite hats.

Case 2.. There is a person with a gold hat next to the person in the gold hat at the end. Then the line
from the second person to the end is length k, has a gold hat at one end and a purple hat at the
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have P(k + 1).
By the principle of induction, we have P(n) for all n > 2

