$$
\begin{aligned}
& S=\{1,0,2,2,4,5,6,7, \ldots\}
\end{aligned}
$$

Structural Induction and Regular Expressions
\qquad Lecture 17
β Trees!

More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.
Recursive Step: T_{1} an $\left(T_{2}\right.$ are rooted binary trees with roots r_{1} and r_{2}, then a tree rooted at a new node, with children r_{1}, r_{2} is a binary tree.

Functions on Binary Trees

height($(\bigcirc)=0$
height \quad) $=1+\max \left(\right.$ height $\left(T_{1}\right)$,height $\left.\left(T_{2}\right)\right)$

Claim

We want to show that trees of a certain height can't have too many nodes. Specifically our claim is this:

For all trees $T, \operatorname{size}(T) \leq 2^{\operatorname{height}(T)+1}-1$

Take a moment to absorb this formula, then we'll do induction!

Structural Induction on Binary Trees

Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1^{\text {" }}$. We show $P(T)$ for all binary treesTby structural induction.
Base Case: Let $T=O$. $\operatorname{size}(T)=1$ and height $(T)=0$, so $\operatorname{size}(T)=1 \leq 2-$ $1=2^{0+1}-1=2^{\text {height }(T)+1}-1$.

Inductive Hypothesis: Suppose $\mathrm{P}(L)$ and $\mathrm{P}(R)$ hold for arbitrary trees L, R. Let T be the tree

Inductive step: Figure out, (1) what we must show (2) a formula for height and a formula for size of T.

Structural Induction on Binary Trees (cont.)

 Let $P(T)$ be size $(T) \leq 2^{\text {height }(T)+1}-1$ We show $P(T)$ for all binary trees T by structural inductors.
height $(T)=1+\max \{\operatorname{height}(L), \operatorname{height}(R)\}$

So $P(T)$ holds, and we have $P(T)$ for all binary trees T by the principle of induction.

How do heights compare?

How do heights compare?

If L is taller than R ?

If L, R same height?
If R is taller than L ?

In all cases. height $(T) \geq$ height $(L)+$. height $(T) \geq$ height $(R)+1$

Structural Induction on Binary Trees (cont.)

Let $P(T)$ be "size (T) 尼height $(T)+1-1$ '. We show $P(T)$ for all binary trees T by structural induction.

height $(T)=1+\max \{\operatorname{height}(L)$, height $(R)\}$

$$
\operatorname{size}(T)=1+\operatorname{size}(L)+\operatorname{size}(R)
$$

$$
\operatorname{size}(T)=\frac{1-\operatorname{size}(L)+\operatorname{size}(R) \leq 1+2^{\operatorname{height}(L)+1}-1+2^{\operatorname{height}(R)+1}-1}{\leq 2^{\text {height }(L)+1}+2^{\text {height }(R)+1}-1(\text { cancel 1's) }} \frac{(\text { by IH })}{\therefore}
$$

$$
\leq 2^{\operatorname{height}(T)}+2^{\operatorname{height}(T)}-1=2^{\operatorname{height}(T)+1}-1 \text { (} T \text { taller than subtrees) }
$$

So $P(T)$ holds, and we have $P(T)$ for all binary trees T by the principle of induction.

Structural Induction Template

1. Define $P()$ State that you will show $P(x)$ holds for all $x \in S$ and that your proof is by structural induction.
2. Base Case: Show $P(b)$
[Do that for every b in the basis step of defining S]
3. Inductive Hypothesis: Suppose $P(x)$
[Do that for every x listed as already in S in the recursive rules].
4. Inductive Step: Show $P()$ holds for the "new elements."
[You will need a separate step for every element created by the recursive rules].
5. Therefore $P(x)$ holds for all $x \in S$ by the principle of induction.

Structural Induction on Strings

Strings

ε is "the empty string"
The string with 0 characters - "" in Java (not null!)
Σ^{*} :
Basis: $\varepsilon \in \Sigma^{*}$.
Recursive: If $w \in \Sigma^{*}$ and $a \in \Sigma$ then $w a \in \Sigma^{*}$
$w a$ means the string of w with the character a appended.
You'll also see $w \cdot a$ (a \cdot to mean "concatenate" i.e. + in Java)

Functions on Strings

Since strings are defined recursively, most functions on strings are as well.
Length:
$\operatorname{len}(\varepsilon)=0$;
$\operatorname{len}(w a)=\operatorname{len}(w)+1$ for $w \in \Sigma^{*}, a \in \Sigma$
Reversal:
$\varepsilon^{R}(w a)^{\varepsilon^{\prime}}=a w^{R}$ for $w \in \Sigma^{*}, a \in \Sigma$
Concatenation
$x \cdot \varepsilon=x$ for all $x \in \Sigma^{*} ;$
$x \cdot(w a)=(x \cdot w) a$ for $w \in \Sigma^{*}, a \in \Sigma$
Number of c 's in a string

$$
\begin{aligned}
& \#_{c}(\varepsilon)=0 \\
& \#_{c}(w c)=\#_{c}(w)+1 \text { for } w \in \Sigma^{*} \text {; } \\
& \#_{c}(w a)=\#_{c}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma \backslash\{c\} .
\end{aligned}
$$

Claim for a $x, y \in \Sigma^{*} \operatorname{len}(x ; y)=\operatorname{len}(x)+\operatorname{len}(y)$.
Let $P(y)$ be "for all $x \in \Sigma^{*} \operatorname{len}(x \cdot y)=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$." "
Notice the strangeness of this $P()$ there is a "for all x " inside the definition of $P(y)$.

$$
P(x, y)=\text { ln }
$$

That means well have to introduce an arbitrary x as part of the base case and the inductive step!

Claim for all $x, y \in \Sigma^{*} \operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$.

 $p\left(\sum_{Y}\right.$-et $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{*}$."We prove $P(y)$ for all $x \in \Sigma^{*}$ by structural induction.
Base Case:
Inductive Hypothesis
Inductive Step:

We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^{*} \operatorname{len}(x y)=\operatorname{len}(x)+\operatorname{len}(y)$, as required.
()

$\ln (x$

Claim for all $x, y \in \Sigma^{*} \operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$.

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(\mathrm{y})$ for all $x \in \Sigma^{*}$."
We prove $P(y)$ for all $x \in \Sigma^{*}$ by structural induction.
Base Case: Let x be an arbitrary string, len $(x \cdot \epsilon)=\operatorname{len}(x)$
$=\operatorname{len}(x)+0=\operatorname{len}(x) \neq \operatorname{ten}(\varepsilon)$
Inductive Hypothesis: Suppose $P(w)$ for an arbitrary string w. Inductive Step:

We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^{*} \operatorname{len}(x y)=\operatorname{len}(x)+\operatorname{len}(y)$, as required.

Claim for all $x, y \in \Sigma^{*} \operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$.

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(\mathrm{y})$ for all $x \in \Sigma^{*}$."
We prove $P(y)$ for all $x \in \Sigma^{*}$ by structural induction.
Base Case: Let x be an arbitrary string, len $(x \cdot \epsilon)=\operatorname{len}(\mathrm{x})$
$=\operatorname{len}(x)+0=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$
Inductive Hypothesis: Suppose $P(w)$ for an arbitrary string w.
Inductive Step: Let $y=w a$ for an arbitrary $a \in \Sigma$. We show $P(y)$. Let x be an
arbitrary string.
Therefore, len $(x y)=\operatorname{len}(x)+\operatorname{len}(y)$, as required.
We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^{*}$ len $(x y)=\operatorname{len}(x)+\operatorname{len}(y)$, as required.

Claim for all $x, y \in \Sigma^{*} \operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$.

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+$ len (y) for all $x \in \Sigma^{*}$."
We prove $P(y)$ for all $x \in \Sigma^{*}$ by structural induction.
Base Case: Let x be an arbitrary string, len $(x \cdot \epsilon)=\operatorname{len}(x)$

$$
=\operatorname{len}(x)+0=\operatorname{len}(x)+\operatorname{len}(\varepsilon)
$$

Inductive Hypothesis: Suppose $P(w)$ for an arbitrary string w.
Inductive Step: Let $y=w a$ for an arbitrary $a \in \Sigma$. We show $P(y)$. Let x be an arbitrary string. $\operatorname{len}(x y)=\operatorname{len}(x w a)=\operatorname{len}(x w)+1$ (by definition of len)

$$
\begin{aligned}
& =\operatorname{len}(x)+\operatorname{len}(w)+1 \text { (by IH) } \\
& =\operatorname{len}(x)+\text { len(wa) (by definition of len) }
\end{aligned}
$$

Therefore, len $(x y)=\operatorname{len}(x)+l e n(y)$, as required.
We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^{*} \operatorname{len}(x y)=\operatorname{len}(x)+\operatorname{len}(y)$, as required.

Why all those arbitraries?

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{*}$."
$P(\varepsilon)$ is a for-all statement, introduce
arbitrary variable to show for-all. We prove $P(y)$ for all $x \in \Sigma^{*}$ by structural induc Base Case: Let x be an arbitrary string, en $(x \cdot \epsilon)=\operatorname{len}(x)$ $=\operatorname{len}(x)+0=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$

Needs to be arbitrary because it's in the IH (induction wouldn't show "all strings" otherwise)

Inductive Hypothesis: Suppose $P(w)$ for an arbitrary string w.
Inductive Step: Let $y=w a$ for an arbitrary $a \in \Sigma$. We show $P(y)$. Let x be an arbitrary string.

$$
\begin{aligned}
\operatorname{len}(x y)=\operatorname{len}(x w a) & =\operatorname{len}(x w)+1(\text { by definition of len }) \\
& =\operatorname{len}(x)+\operatorname{len}(w)+1(\text { becu } \mathrm{IH}) \\
& =\operatorname{len}(x)+\operatorname{len}(w a)(\text { by definition of len })
\end{aligned}
$$

$$
\text { Recursive rule says "every } a \in
$$

$$
\Sigma^{\prime \prime} \text { so we need to argue for }
$$

Therefore, len $(x y)=\operatorname{len}(x)+l e n(y)$, as required.
$P(y)$ is a for-all statement, introduce arbitrary variable to show for-all.

We conclude that $P(y)$ holds for all strings y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^{*}$ len($x y$) $=$ len(x$)+$ len(y), as required.

A few last comments

What does the inductive step look like?

Here's a recursively-defined set:
Basis: $0 \in T$ and $5 \in T$
Recursive: If $x, y \in T$ then $x+y \in T$ and $x-y \in T$.
Let $P(x)$ be " $5 \mid x$ "
What does the inductive step look like?
Well there's two recursive rules, so we have two things to show

Just the IS (you still need the other steps)

Let t be an arbitrary element of T not covered by the base case. By the exclusion rule $t=x+y$ or $t=x-y$ for $x, y \in T$.
Inductive hypothesis: Suppose $P(x)$ and $P(y)$ hold.
Case 1: $\mathrm{t}=x+y$
By IH $5 \mid x$ and $5 \mid y$ so $5 a=x$ and $5 b=y$ for integers a, b.
Adding, we get $x+y=5 a+5 b=5(a+b)$. Since a, b are integers, so is $a+b$, and $P(x+y)$, i.e. $P(t)$, holds.
Case 2: $\mathrm{t}=x-y$
By IH $5 \mid x$ and $5 \mid y$ so $5 a=x$ and $5 b=y$ for integers a, b.
Subtracting, we get $x-y=5 a-5 b=5(a-b)$. Since a, b are integers, so is $a-b$, and $P(x-y)$, i.e., $P(t)$, holds.
In all cases, we have $P(t)$. By the principle of induction, $P(x)$ holds for all $x \in T$.

If you don't have a recursively-defined set

You won't do structural induction.
You can do weak or strong induction though.
For example, Let $P(n)$ be "for all elements of S of "size" n <something> is true"
To prove "for all $x \in S$ of size $n . .$. " you need to start with "let x be an arbitrary element of size $k+1$ in your IS.
You CAN'T start with size k and "build up" to an arbitrary element of size $k+1$ it isn't arbitrary.

Part 3 of the course!

Course Outline

Symbolic Logic (training wheels)
Just make arguments in mechanical ways.
Set Theory/Number Theory (bike in your backyard)
Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments
But now with objects you haven't used before.
-A first taste of how we can argue rigorously about computers.
First up: regular expressions, context free grammars, automata - understand these "simpler computers"
Soon: what these simple computers can do
Then: what simple computers can't do.
Last week: A problem our computers cannot solve.

The definitions for Friday

Regular Expressions

I have a giant text document. And I want to find all the email addresses inside. What does an email address look like?
[some letters and numbers] @ [more letters] . [com, net, or edu]

We want to ctrl-f for a pattern of strings rather than a single string

Languages

A set of strings is called a language.
Σ^{*} is a language
"the set of all binary strings of even length" is a language.
"the set of all palindromes" is a language.
"the set of all English words" is a language.
"the set of all strings matching a given pattern" is a language.

Regular Expressions

Basis:

ε is a regular expression. The empty string itself matches the pattern (and nothing else does).
\varnothing is a regular expression. No strings match this pattern.
a is a regular expression, for any $a \in \Sigma$ (i.e. any character). The character itself matching this pattern.

Recursive

If A, B are regular expressions then $(A \cup B)$ is a regular expression matched by any string that matches A or that matches B [or both]).
If A, B are regular expressions then $A B$ is a regular expression. matched by any string x such that $x=y z, y$ matches A and z matches B.
If A is a regular expression, then A^{*} is a regular expression.
matched by any string that can be divided into 0 or more strings that match A.

Regular Expressions
$(a \cup b c)$
$0(0 \cup 1) 1$

0 *
$(0 \cup 1)^{*}$

Extra Practice

Induction: Hats!

You have n people in a line ($n \geq 2$). Each of them wears either a purple hat or a gold hat. The person at the front of the line wears a purple hat. The person at the back of the line wears a gold hat.
Show that for every arrangement of the line satisfying the rule above, there is a person with a purple hat next to someone with a gold hat.

Yes, this is kinda obvious. I promise this is good induction practice. Yes, you could argue this by contradiction. I promise this is good induction practice.

Induction: Hats!

Define $P(n)$ to be "in every line of n people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat"
We show $P(n)$ for all integers $n \geq 2$ by induction on n.
Base Case: $n=2$
Inductive Hypothesis:
Inductive Step:

By the principle of induction, we have $P(n)$ for all $n \geq 2$

Induction: Hats!

Define $P(n)$ to be "in every line of n people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat"
We show $P(n)$ for all integers $n \geq 2$ by induction on n.
Base Case: $n=2$ The line must be just a person with a purple hat and a person with a gold hat, who are next to each other.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 2$.
Inductive Step: Consider an arbitrary line with $k+1$ people in purple and gold hats, with a gold hat at one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.
By the principle of induction, we have $P(n)$ for all $n \geq 2$

Induction: Hats!

Define $P(n)$ to be "in every line of n people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat"
We show $P(n)$ for all integers $n \geq 2$ by induction on n.
Base Case: $n=2$ The line must be just a person with a purple hat and a person with a gold hat, who are next to each other.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 2$.
Inductive Step: Consider an arbitrary line with $k+1$ people in purple and gold hats, with a gold hat at one end and a purple hat at the other.
Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those people are the required adjacent opposite hats.
Case 2:. There is a person with a gold hat next to the person in the gold hat at the end. Then the line from the second person to the end is length k, has a gold hat at one end and a purple hat at the other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.
In either case we have $P(k+1)$.
By the principle of induction, we have $P(n)$ for all $n \geq 2$

