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Warm up:

What is the following recursively-defined set?

Basis Step: 4 ∈ 𝑆, 5 ∈ 𝑆
Recursive Step: If 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆 then 𝑥 − 𝑦 ∈ 𝑆



Trees!



More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.

Recursive Step: If 𝑇1 and 𝑇2 are rooted binary trees with roots 𝑟1 and 𝑟2, 
then a tree rooted at a new node, with children 𝑟1, 𝑟2 is a binary tree.

𝑇1 𝑇2



Functions on Binary Trees

size(    )=1

size(              ) = size(𝑇1) + size(𝑇2) + 1

height(   ) = 0

height(             ) = 1+max(height(𝑇1),height(𝑇2))

𝑇1 𝑇2

𝑇1 𝑇2



Claim

We want to show that trees of a certain height can’t have too many 
nodes. Specifically our claim is this:

For all trees 𝑇, size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1

Take a moment to absorb this formula, then we’ll do induction!



Structural Induction on Binary Trees

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary 
trees 𝑇 by structural induction.

Base Case: Let 𝑇 = . size(𝑇)=1 and height(𝑇) = 0, so size(𝑇)=1≤ 2 −
1 = 20+1 − 1 = 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1.

Inductive Hypothesis: Suppose P(𝐿) and P 𝑅 hold for arbitrary trees 
𝐿, 𝑅. Let 𝑇 be the tree 

Inductive step: Figure out, (1) what we must show (2) a formula for 
height and a formula for size of 𝑇.

𝐿 𝑅



Structural Induction on Binary Trees (cont.)

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by 
structural induction.

𝑇 = . 

height(𝑇)=1 +max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }

size(𝑇)= 1 +size(𝐿)+size(𝑅)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of 
induction.

𝐿 𝑅



How do heights compare?

If 𝐿 is taller than 𝑅?

𝐿

𝑅

If 𝐿, 𝑅 same height?

𝐿 𝑅

If 𝑅 is taller than 𝐿?

𝐿
𝑅

height(   ) = 0

height(             ) = 

1+max(height(𝑇1),height(𝑇2))
𝑇1 𝑇2



How do heights compare?

If 𝐿 is taller than 𝑅?

height 𝑇 =height 𝐿 + 1

height(𝑇) >height(𝑅) + 1

𝐿

𝑅

If 𝐿, 𝑅 same height?

height 𝑇 =height 𝐿 + 1

height 𝑇 =height(𝑅) + 1

𝐿 𝑅

If 𝑅 is taller than 𝐿?

height 𝑇 >height 𝐿 + 1

height 𝑇 =height(𝑅) + 1

𝐿
𝑅

In all cases: height(𝑇)≥height(𝐿)+1, height(𝑇)≥height(𝑅)+1



Structural Induction on Binary Trees (cont.)

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by structural 
induction.

𝑇 = . 

height(𝑇)=1 +max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }

size(𝑇)= 1 +size(𝐿)+size(𝑅)

size(𝑇)=1+size(𝐿)+size 𝑅 ≤ 1 + 2ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 +1 − 1 +2ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 +1 −1 (by IH)

≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 +1 +2ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 +1 −1 (cancel 1’s)

≤ 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) + 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) − 1 = 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1 (𝑇 taller than subtrees)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of induction.

𝐿 𝑅



Structural Induction Template

1. Define 𝑃() State that you will show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 and that 
your proof is by structural induction.

2. Base Case: Show 𝑃(𝑏)
[Do that for every 𝑏 in the basis step of defining 𝑆]

3. Inductive Hypothesis: Suppose 𝑃(𝑥)
[Do that for every 𝑥 listed as already in 𝑆 in the recursive rules].

4. Inductive Step: Show 𝑃() holds for the “new elements.” 
[You will need a separate step for every element created by the recursive rules].

5. Therefore 𝑃 𝑥 holds for all 𝑥 ∈ 𝑆 by the principle of induction.



Structural Induction on Strings



Strings

𝜀 is “the empty string”

The string with 0 characters – “” in Java (not null!)

Σ∗:

Basis: 𝜀 ∈ Σ∗.

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗

𝑤𝑎 means the string of 𝑤 with the character 𝑎 appended.

You’ll also see 𝑤 ⋅ 𝑎 (a ⋅ to mean “concatenate” i.e. + in Java) 



Functions on Strings
Since strings are defined recursively, most functions on strings are as well.

Length:

len(𝜀)=0; 

len(𝑤𝑎)=len(𝑤)+1 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Reversal:

𝜀𝑅 = 𝜀; 
𝑤𝑎 𝑅 = 𝑎𝑤𝑅 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Concatenation

𝑥 ⋅ 𝜀 = 𝑥 for all 𝑥 ∈ Σ∗; 
𝑥 ⋅ 𝑤𝑎 = 𝑥 ⋅ 𝑤 𝑎 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Number of 𝑐’s in a string

#𝑐 𝜀 = 0
#𝑐 𝑤𝑐 = #𝑐 𝑤 + 1 for 𝑤 ∈ Σ∗; 
#𝑐 𝑤𝑎 = #𝑐(𝑤) for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ ∖ {𝑐}.



Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).

Let 𝑃(𝑦) be “for all 𝑥 ∈ Σ∗ len(x⋅y)=len(x) + len(y). “

Notice the strangeness of this 𝑃() there is a “for all 𝑥“ inside the 
definition of 𝑃(𝑦).

That means we’ll have to introduce an arbitrary 𝑥 as part of the base 
case and the inductive step!



Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case:

Inductive Hypothesis

Inductive Step:

We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction. 
Unwrapping the definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as 
required.

Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).



Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary string 𝑤.

Inductive Step:

We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction. 
Unwrapping the definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as 
required.

Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).



Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary string 𝑤.

Inductive Step: Let 𝑦 = 𝑤𝑎 for an arbitrary 𝑎 ∈ Σ. We show 𝑃 𝑦 . Let 𝑥 be an 
arbitrary string. 

…

Therefore, len(xy)=len(x) + len(y), as required.

We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction. 
Unwrapping the definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as 
required.

Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).



Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary string 𝑤.

Inductive Step: Let 𝑦 = 𝑤𝑎 for an arbitrary 𝑎 ∈ Σ. We show 𝑃 𝑦 . Let 𝑥 be an arbitrary string. 

len(xy)=len(xwa) =len(xw)+1 (by definition of len)

=len(x) + len(w) + 1 (by IH)

=len(x) + len(wa) (by definition of len)

Therefore, len(xy)=len(x) + len(y), as required.

We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction. Unwrapping the 
definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as required.

Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).



Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary string 𝑤.

Inductive Step: Let 𝑦 = 𝑤𝑎 for an arbitrary 𝑎 ∈ Σ. We show 𝑃 𝑦 . Let 𝑥 be an arbitrary string. 

len(xy)=len(xwa) =len(xw)+1 (by definition of len)

=len(x) + len(w) + 1 (by IH)

=len(x) + len(wa) (by definition of len)

Therefore, len(xy)=len(x) + len(y), as required.

We conclude that 𝑃(𝑦) holds for all strings 𝑦 by the principle of induction. Unwrapping the 
definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as required.

Why all those arbitraries?

Needs to be arbitrary because 

it’s in the IH (induction wouldn’t 

show “all strings” otherwise)

Recursive rule says “every 𝑎 ∈
Σ“ so we need to argue for 

every 𝑎.

𝑃(𝑦) is a for-all statement, 

introduce arbitrary variable to 

show for-all. 

𝑃(𝜀) is a for-all statement, introduce 

arbitrary variable to show for-all. 



A few last comments



What does the inductive step look like?

Here’s a recursively-defined set:

Basis: 0 ∈ 𝑇 and 5 ∈ 𝑇

Recursive: If 𝑥, 𝑦 ∈ 𝑇 then 𝑥 + 𝑦 ∈ 𝑇 and 𝑥 − 𝑦 ∈ 𝑇.

Let 𝑃(𝑥) be “5|𝑥”

What does the inductive step look like?

Well there’s two recursive rules, so we have two things to show



Just the IS (you still need the other steps)

Let 𝑡 be an arbitrary element of 𝑇 not covered by the base case. By the 
exclusion rule 𝑡 = 𝑥 + 𝑦 or 𝑡 = 𝑥 − 𝑦 for 𝑥, 𝑦 ∈ 𝑇.

Inductive hypothesis: Suppose 𝑃(𝑥) and 𝑃(𝑦) hold.

Case 1: t = 𝑥 + 𝑦

By IH 5|𝑥 and 5|𝑦 so 5𝑎 = 𝑥 and 5𝑏 = 𝑦 for integers 𝑎, 𝑏.

Adding, we get 𝑥 + 𝑦 = 5𝑎 + 5𝑏 = 5(𝑎 + 𝑏). Since 𝑎, 𝑏 are integers, so is 𝑎 + 𝑏,
and 𝑃(𝑥 + 𝑦), i.e. 𝑃 𝑡 , holds.

Case 2: t = 𝑥 − 𝑦

By IH 5|𝑥 and 5|𝑦 so 5𝑎 = 𝑥 and 5𝑏 = 𝑦 for integers 𝑎, 𝑏.

Subtracting, we get 𝑥 − 𝑦 = 5𝑎 − 5𝑏 = 5(𝑎 − 𝑏). Since 𝑎, 𝑏 are integers, so is 
𝑎 − 𝑏, and 𝑃(𝑥 − 𝑦), i.e., 𝑃 𝑡 , holds.

In all cases, we have 𝑃(𝑡). By the principle of induction, 𝑃(𝑥) holds for all 𝑥 ∈ 𝑇.



If you don’t have a recursively-defined set

You won’t do structural induction.

You can do weak or strong induction though.

For example, Let 𝑃 𝑛 be “for all elements of 𝑆 of “size” 𝑛 <something> 
is true”

To prove “for all 𝑥 ∈ 𝑆 of size 𝑛…” you need to start with “let 𝑥 be an 
arbitrary element of size 𝑘 + 1 in your IS.

You CAN’T start with size 𝑘 and “build up” to an arbitrary element of 
size 𝑘 + 1 it isn’t arbitrary.



Part 3 of the course!



Course Outline

Symbolic Logic (training wheels) 
Just make arguments in mechanical ways.

Set Theory/Number Theory (bike in your backyard)

Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments

But now with objects you haven’t used before.

-A first taste of how we can argue rigorously about computers.

First up: regular expressions, context free grammars, automata – understand these 
“simpler computers”

Soon: what these simple computers can do
Then: what simple computers can’t do.

Last week: A problem our computers cannot solve.



The definitions for Friday



Regular Expressions

I have a giant text document. And I want to find all the email addresses 
inside. What does an email address look like?

[some letters and numbers] @ [more letters] . [com, net, or edu]

We want to ctrl-f for a pattern of strings rather than a single string



Languages

A set of strings is called a language.

Σ∗ is a language

“the set of all binary strings of even length” is a language.

“the set of all palindromes” is a language.

“the set of all English words” is a language.

“the set of all strings matching a given pattern” is a language.



Regular Expressions

Basis:
𝜀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).

∅ is a regular expression. No strings match this pattern. 

𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this pattern. 

Recursive
If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression

matched by any string that matches 𝐴 or that matches 𝐵 [or both]).

If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression.

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.

If 𝐴 is a regular expression, then 𝐴∗ is a regular expression.

matched by any string that can be divided into 0 or more strings that match 𝐴.



Regular Expressions

(𝑎 ∪ 𝑏𝑐)

0 0 ∪ 1 1

0∗

0 ∪ 1 ∗



Extra Practice



Induction: Hats!

You have 𝑛 people in a line (𝑛 ≥ 2). Each of them wears either a purple 
hat or a gold hat. The person at the front of the line wears a purple hat. 
The person at the back of the line wears a gold hat. 

Show that for every arrangement of the line satisfying the rule above, 
there is a person with a purple hat next to someone with a gold hat. 

Yes, this is kinda obvious. I promise this is good induction practice.

Yes, you could argue this by contradiction. I promise this is good 
induction practice.



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a 
purple hat at one end and a gold hat at the other, there is a person with a 
purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2

Inductive Hypothesis:

Inductive Step: 

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end 
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who 
are next to each other. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at 
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2



Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end 
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat” 

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who 
are next to each other. 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at 
one end and a purple hat at the other.

Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those 
people are the required adjacent opposite hats.

Case 2:. There is a person with a gold hat next to the person in the gold hat at the end. Then the line 
from the second person to the end is length 𝑘, has a gold hat at one end and a purple hat at the 
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have 𝑃(𝑘 + 1).

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2


