Bijection

One-to-one (aka injection)
A function f is one-to-one iff
$\forall \boldsymbol{\forall} \forall \boldsymbol{b}(f(a)=f(b) \rightarrow a=b)$

Onto (aka surjection)

A function $f: A \rightarrow B$ is onto iff $\forall b \in B \exists a \in A(b=f(a))$

Bijection

A function $f: A \rightarrow B$ is a bijection iff
f is one-to-one and onto
A bijection maps every element of the domain to exactly one element of the co-domain, and every element of the domain to exactly one element of the domain.

One-to-one proofs

It's a forall statement! We know how to prove it.
Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function given by $f(x)=x+5$.
Claim: f is one-to-one
Proof:
What's the outline? What do we introduce, what do we assume, what's our target?

Directed Graphs

$$
G=(V, E)
$$

V is a set of vertices (an underlying set of elements)
E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_{0}, v_{1}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ Simple Path: path with all v_{i} distinct Cycle: path with $v_{0}=v_{k}$ (and $k>0$) simple Cycle: simple path plus edge $\left(v_{k}, v_{0}\right)$ with $k>0$

Deterministic Finite Automata

Can also represent transitions with a table.

Old State	0	1
s_{0}	s_{0}	s_{1}
s_{1}	s_{0}	s_{2}
s_{2}	s_{0}	s_{3}
s_{3}	s_{3}	s_{3}

