
Functions And Graphs CSE 311 Winter 2024

Lecture 20



Today

Some definitions that will help us over the next few weeks

Function definitions

Graphs and some terms

Finally start on “computation”

Computers with 𝑂(1) memory



Functions



Some types of functions

Why?

We’ll want to talk about sizes of infinite sets during the last week of 
classes. It’ll help us find problems our computers can’t solve.

Ok, but why now?

It’ll let us practice set proofs a bit more over the next few weeks!



Two Requirements for a Bijection

A function 𝑓: 𝐴 → 𝐵 maps every element of 𝐴 to one element of 𝐵

𝐴 is the “domain”, 𝐵 is the “co-domain”

That is, every output has at most one possible input.

A function 𝒇 is one-to-one iff

∀𝒂∀𝒃(𝒇 𝒂 = 𝒇 𝒃 → 𝒂 = 𝒃)

One-to-one (aka injection)



One-to-one (injection)

What did that definition say?

∀𝑎∀𝑏 𝑓 𝑎 = 𝑓 𝑏 → 𝑎 = 𝑏

In contrapositive that looks like

∀𝑎∀𝑏 𝑎 ≠ 𝑏 → 𝑓 𝑎 ≠ 𝑓 𝑏

So if you get two different inputs, then you get two different outpus.



One-to-one proofs

It’s a forall statement! We know how to prove it.

Let 𝑓: ℤ → ℤ be the function given by 𝑓 𝑥 = 𝑥 + 5. 

Claim: 𝑓 is one-to-one

Proof:

What’s the outline? What do we introduce, what do we assume, what’s 
our target?



One-to-one proofs

It’s a forall statement! We know how to prove it.

Let 𝑓: ℤ → ℤ be the function given by 𝑓 𝑥 = 𝑥 + 5. 

Claim: 𝑓 is one-to-one

Proof: Let 𝑎, 𝑏 be arbitrary elements of our domain, and suppose 
𝑓 𝑎 = 𝑓 𝑏 .

…

𝑎 = 𝑏



One-to-one proofs

It’s a forall statement! We know how to prove it.

Let 𝑓: ℤ → ℤ be the function given by 𝑓 𝑥 = 𝑥 + 5. 

Claim: 𝑓 is one-to-one

Proof: Let 𝑎, 𝑏 be arbitrary elements of our domain, and suppose 
𝑓 𝑎 = 𝑓 𝑏 .

By definition of the function, we have 𝑎 + 5 = 𝑏 + 5

Subtracting 5 from each side, we have 𝑎 = 𝑏, meeting the definition of 
one-to-one.



Two Requirements for a Bijection

A function 𝑓: 𝐴 → 𝐵 maps every element of 𝐴 to one element of 𝐵

𝐴 is the “domain”, 𝐵 is the “co-domain”

Every output has at least one input that maps to it.

A function 𝒇: 𝑨 → 𝑩 is onto iff

∀𝒃 ∈ 𝑩∃𝒂 ∈ 𝑨(𝒃 = 𝒇(𝒂))

Onto (aka surjection)



One-to-one proofs

It’s a forall statement! We know how to prove it.

Let 𝑓: ℤ → ℤ be the function given by 𝑓 𝑥 = 𝑥 + 5. 

Claim: 𝑓 is onto

Proof:

What’s the outline? What do we introduce, what do we assume, what’s 
our target?



One-to-one proofs

It’s a forall statement! We know how to prove it.

Let 𝑓: ℤ → ℤ be the function given by 𝑓 𝑥 = 𝑥 + 5. 

Claim: 𝑓 is one-to-one

Proof: Let 𝑏 be an arbitrary element of the codomain. 

Consider .𝑎 =…

…

So 𝑓 𝑎 = 𝑏



One-to-one proofs

It’s a forall statement! We know how to prove it.

Let 𝑓: ℤ → ℤ be the function given by 𝑓 𝑥 = 𝑥 + 5. 

Claim: 𝑓 is one-to-one

Proof: Let 𝑏 be arbitrary element of the codomain.

Let 𝑎 = 𝑏 − 5

Observe that 𝑓 𝑎 = 𝑎 + 5 = 𝑏 − 5 + 5 = 𝑏.

Since 𝑏 ∈ ℤ, 𝑎 is also an integer so it is in the domain. Thus 𝑓 meets the 
definition of onto.



Bijection

A bijection maps every element of the domain to exactly one element of 
the co-domain, and every element of the domain to exactly one 
element of the domain.

A function 𝒇 is one-to-one iff

∀𝒂∀𝒃(𝒇 𝒂 = 𝒇 𝒃 → 𝒂 = 𝒃)

One-to-one (aka injection)

A function 𝒇: 𝑨 → 𝑩 is onto iff

∀𝒃 ∈ 𝑩∃𝒂 ∈ 𝑨(𝒃 = 𝒇(𝒂))

Onto (aka surjection)

A function 𝒇: 𝑨 → 𝑩 is a bijection iff

𝒇 is one-to-one and onto

Bijection



Why do we care about bijections?

Bijections create a (confusingly-named) one-to-one correspondence 
between sets.

There is a bijection 𝑓: 𝐴 → 𝐵 if and only if 𝐴 and 𝐵 are the same size.

A bijections “matches the elements up”

For finite sets we usually tell which of two sets is bigger by counting the 
number of elements in each and comparing the numbers.

These functions let you compare set sizes even if you can’t count the 
elements. We’ll use that idea for infinite sets in a few weeks.



Graphs



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Finite State Machines

(Tiny little computers)



Last Two Weeks

What computers can and can’t do…
Given any finite amount of time.

We’ll start with a simple model of a computer – finite state machines.

What do we want computers to do? Let’s start very simple. 
We’ll give them an input (in a string format), and we want them to say 
“yes” or “no” for that string on a certain question. 
Example questions one might want to answer.
Does this input java code compile to a valid program?

Does this input string match a particular regular expression?

Is this input list sorted?

Depending on the “computer” some questions might be out of reach.



Deterministic Finite Automaton

Our machine is going to get a string as input. 

It will read one character at a time and update “its state.”

At every step, the machine thinks of itself as in one of the 

(finite number) vertices.

When it reads the character it follows the arrow labeled 

with that character to its next state.

Start at the “start state” (unlabeled, incoming arrow).

After you’ve read the last character, accept the string if 

and only if you’re in a “final state” (double circle).



Let’s see an example

Input string: 

011

1010



Let’s see an example

Input string: 

011

1010



Let’s see an example

Input string: 

011

1010



Let’s see an example

Input string: 

011

1010



Let’s see an example

Input string: 

011

1010



Let’s see an example

Input string: 

011

1010



Deterministic Finite Automata

Some more requirements:

Every machine is defined with respect to an alphabet Σ

Every state has exactly one outgoing edge for every character in Σ.

There is exactly one start state; can have as many accept states (aka final 
states) as you want – including none. 



Deterministic Finite Automata

Can also represent transitions with a table.

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3



Deterministic Finite Automata

What is the language of this DFA?

I.e. the set of all strings it accepts?

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3



Deterministic Finite Automata

If the string has 111, then you’ll end up in 𝑠3 and never leave.

If you end with a 0 you’re back in 𝑠0 which also accepts.

And…𝜀 is also accepted

0 ∪ 1 ∗111 0 ∪ 1 ∗ ∪ 0 ∪ 1 ∗0 ∗

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3



Design some DFAs

Let Σ = {0,1,2}

𝑀1 should recognize “strings with an even number of 2’s.

What do you need to remember?

𝑀2 should recognize “strings where the sum of the digits is congruent 
to 0 (𝑚𝑜𝑑 3)”



Design some DFAs

Let Σ = {0,1,2}

𝑀1 should recognize “strings with an even number of 2’s.

𝑀2 should recognize “strings where the sum of the digits is congruent 
to 0 (𝑚𝑜𝑑 3)"

s1 s02

2

0,10,1

2

00

𝑡1

𝑡2

𝑡0

1

2
2

1

1



Designing DFAs notes

DFAs can’t “count arbitrarily high”

For example, we could not make a DFA that remembers the overall sum 
of all the digits (not taken % 3) 

That would have infinitely many states! We’re only allowed a finite 
number.


