Forcing a Mistake

How do we know x, y must be in different states?
Well if one would be accepted and the other rejected, that would be a clear sign.

Or if there's some string z where $x z$ is accepted but $y z$ is rejected (or vice versa).
The machine is deterministic! If x and y take you to the same state, then $x z$ and $y z$ are also in the same state!

Full outline

1. Suppose for the sake of contradiction that L is regular. Then there is some DFA M that recognizes L.
2. Let S be [fill in with an infinite set of prefixes].
3. Because the DFA is finite and S is infinite, there are two (different) strings x, y in S such that x and y go to the same state when read by M [you don't get to control x, y other than having them not equal and in $S J$
4. Consider the string z [argue exactly one of xz, yz will be in L]
5. Since x, y both end up in the same state, and we appended the same z, both $x z$ and $y z$ end up in the same state of M. Since $x z \in L$ and $y z \notin L, M$ does not recognize L. But that's a contradiction!
6. So L must be an irregular language.

Outline for (*

1. Suppose for the sake of contradiction that L is regular. Then there is some DFA M that recognizes L.
2. Let S be (*
3. Because the DFA is finite and S is infinite, there are two (different) strings x, y in S such that x and y go to the same state when read by M Observe that $x=\left({ }^{a}\right.$ for some integer $a, y=\left({ }^{b}\right.$ for some integer b with $a \neq b$.
4. Consider the string z [argue exactly one of xz, yz will be in L]
5. Since x, y both end up in the same state, and we appended the same z, both $x z$ and $y z$ end up in the same state of M. Since $x z \in \operatorname{Land~} y z \notin L, M$ does not recognize L. But that's a contradiction!
6. So L must be an irregular language.

One more, just the key steps

What about $\left\{a^{k} b^{k} c^{k}: k \geq 0\right\}$?

