Full outline

- 1. Suppose for the sake of contradiction that L is regular. Then there is some DFA M that recognizes L.
- 2. Let *S* be [fill in with an infinite set of prefixes].
- 3. Because the DFA is finite and S is infinite, there are two (different) strings x, y in S such that x and y go to the same state when read by M [you don't get to control x, y other than having them not equal and in S]
- 4. Consider the string z [argue exactly one of xz, yz will be in L]
- 5. Since x, y both end up in the same state, and we appended the same z, both xz and yz end up in the same state of M. Since $xz \in L$ and $yz \notin L$, M does not recognize L. But that's a contradiction!
- 6. So *L* must be an irregular language.

Countable

Countable

The set A is countable iff there is an injection from A to \mathbb{N} , Equivalently, A is countable iff it is finite or there is a bijection from A to \mathbb{N}

 \mathbb{N} , \mathbb{Z} , $\{x: x \text{ is an even integer}\}$ are all countable.

To build a bijection from A to \mathbb{N} , just list all the elements!

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number	Digits after decimal	0	1	2	3	4	5	6	7	
f(0)	0.	3	3	3	3	3	Goal: find a real number between 0 and 1 that isn't on our table. (contradiction to bijection)			
f(1)	0.	2	7	2	7	2				
<i>f</i> (2)	0.	1	4	1	5	9				
f(3)	0.	2	2	2	2	2				
f(4)	0.	1	2	3	4	5	0	/	Ö	•••
f(5)	0.	9	8	7	6	5	4	3	2	
<i>f</i> (6)	0.	8	2	7	6	4	5	7	4	
f(7)	0.	5	9	4	2	7	5	1	7	

Bijection

One-to-one (aka injection)

A function f is one-to-one iff $\forall a \forall b (f(a) = f(b) \rightarrow a = b)$

Onto (aka surjection)

A function $f: A \rightarrow B$ is onto iff $\forall b \in B \exists a \in A(b = f(a))$

Bijection

A function $f: A \rightarrow B$ is a bijection iff f is one-to-one and onto

A bijection maps every element of the domain to **exactly** one element of the co-domain, and every element of the domain to **exactly** one element of the domain.