Halting Problem CSE 311 Winter 2024 Lecture 26

Bijection

One-to-one (aka injection)

A function f is one-to-one iff $\forall a \forall b (f(a) = f(b) \rightarrow a = b)$

Onto (aka surjection)

A function $f: A \rightarrow B$ is onto iff $\forall b \in B \exists a \in A(b = f(a))$

Bijection

A function $f: A \rightarrow B$ is a bijection iff f is one-to-one and onto

A bijection maps every element of the domain to **exactly** one element of the co-domain, and every element of the domain to **exactly** one element of the domain.

Definition

Two sets *A*, *B* have the same size (same cardinality) if and only if there is a bijection $f: A \rightarrow B$

This matches our intuition on finite sets. But it also works for infinite sets!

Let's see just how infinite these sets are.

Countable

Countable

The set A is countable iff there is an injection from A to \mathbb{N} , Equivalently, A is countable iff it is finite or there is a bijection from A to \mathbb{N}

 $\mathbb{N}, \mathbb{Z}, \{x: x \text{ is an even integer}\}$ are all countable.

Let's Try one that's a little harder

What about \mathbb{Q} . There's gotta be more of those right?

It's pretty intuitive to think there are more rationals than integers. The rationals are **dense**.

Between every two rationals, there's another rational number.

Or said in more intimidating fashion: between every two rationals there are infinitely many others!

The set of positive rational numbers

4 1/5 1/6 1⁄8 /5 2/ 3, ·**6** 3/8 3/5 3/ **´**4 4/7 4/8 **A**/5 4/6 5/6 5/5 6/4/6/5 612 *6*/6 6/3

••• ••• ••• •••

In bijection with the natural numbers

Order the rationals by their denominator (increasing), breaking ties by numerator.

1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, ...

f(x) =the x^{th} number in that list (indexed from 0) That's a bijection from N to \mathbb{Q}^+ (it's not a nice clean formula, but it's definitely a function)

In Bijection with the natural numbers

How do we get all of \mathbb{Q} ?

We already know how to "get twice as many" – map the even naturals to positives, and the odds to negatives. Like when we were mapping \mathbb{N} to \mathbb{Z} .

Fun fact:

The "order via diagonals" technique is closely related to "dovetailing" a super-useful technique in computability theory (take 431 to learn more)

Uncountable

Alright. There are clever ways to build bijections. Is there anything that's bigger than \mathbb{N} ?

And...like...how would we prove it?

A proof idea

A set is countable iff it can be listed (a list is a bijection with \mathbb{N}).

We'll take advantage of that to find an uncountable set.

Claim \mathbb{R} is uncountable. Actually, it's easier if we show [0,1) is uncountable (i.e. real numbers between 0 and 1).

What do real numbers look like

0. 3 3 3 3 3 3 3 3 3... 0. 2 7 2 7 2 8 5 4... 0. 1 4 1 5 9 2 6 5... 0. 2 2 2 2 2 2 2 2 2 ... 0. 1 2 3 4 5 6 7 8... 0. 9 8 7 6 5 4 3 2... 0. 8 2 7 6 4 5 7 4... 0. 5 9 4 2 7 5 1 7...

A string of digits!

Well not a "string" An infinitely long sequence of digits is more accurate.

Uncountable

Suppose, for the sake of contradiction, that [0,1) is countable.

Then there is a bijection $f: \mathbb{N} \rightarrow [0,1)$. Use that bijection to make the following table...

Number	Digits after decimal	0	1	2	3	4	5	6	7		
f(0)	0.	3	3	3	3	3	Goa	al find a	a real ni	ımber	
f(1)	0.	2	7	2	7	2	betwe	en 0 ar	nd 1 that	t isn't or	n
<i>f</i> (2)	0.	1	4	1	5	9		our	table.		
<i>f</i> (3)	0.	2	2	2	2	2	(con	tradictio	on to bij	ection)	
f(4)	0.	1	2	3	4	5	0	/	ð	•••	
<i>f</i> (5)	0.	9	8	7	6	5	4	3	2	•••	
<i>f</i> (6)	0.	8	2	7	6	4	5	7	4	•••	
<i>f</i> (7)	0.	5	9	4	2	7	5	1	7	•••	
	•••	•••	•••		•••						

Number	Digits after decimal	0	1	2	3	4	5	6	7	
<i>f</i> (0)	0.	3	3	3	3	3	How	do we	find a n	umber
<i>f</i> (1)	0.	2	7	2	7	2	tł	nat's not	t in our	list?
<i>f</i> (2)	0.	1	4	1	5	9	Well le	•t's mak	e sure v	whatever
<i>f</i> (3)	0.	2	2	2	2	2	our r	number	is, it's n	ot $f(0)$
f(4)	0.	1	2	3	4	5	0	/	ð	•••
<i>f</i> (5)	0.	9	8	7	6	5	4	3	2	•••
<i>f</i> (6)	0.	8	2	7	6	4	5	7	4	•••
<i>f</i> (7)	0.	5	9	4	2	7	5	1	7	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

decimal										
0.	3)3	3	3	3	Well le	et's mak	e sure v	vhateve	r
0.	2	7	2	7	2	our r	number	is, it's n	ot $f(0)$	
0.	1	4	1	5	9					
0.	2	2	2	2	2	Set t	he 0 co	lumn tc	not 3,	
0.	1	2	3	4	5	0	Sd /	y/. 8	•••	
0.	9	8	7	6	5	4	3	2	•••	
0.	8	2	7	6	4	5	7	4	•••	
^	F	0	4	2	7	5	1	7	•••	
	decimal 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	decimal 3 0. 3 0. 2 0. 1 0. 2 0. 1 0. 9 0. 8 0. 5	decimal Image: state interval and int	decimalII0. 3 3 3 0. 2 7 2 0. 1 4 1 0. 2 2 2 0. 1 2 3 0. 9 8 7 0. 8 2 7	decimalIIII0. 3 3 3 3 0. 2 7 2 7 0. 1 4 1 5 0. 2 2 2 2 0. 1 2 3 4 0. 9 8 7 6 0. 8 2 7 6	decimalIIIIII0. 3 3 3 3 3 3 0. 2 7 2 7 2 7 2 0. 1 4 1 5 9 0. 2 2 2 2 2 2 0. 1 2 3 4 5 0. 9 8 7 6 5 0. 8 2 7 6 4	decimal Image: Market in the state i	decimal Image: Ima	decimal Image: Marcine M	decimal Image: Imag

	Number	Digits after decimal	0	1	2	3	4	5	6	7		
	<i>f</i> (0)	0.	3	3	3	3	3	Well le	et's mak	e sure v	whateve	ېr
	<i>f</i> (1)	0.	2	7	2	7	2	our r	number	is, it's n	ot $f(1)$	ĺ
	<i>f</i> (2)	0.	1	4	1	5	9				_	
	<i>f</i> (3)	0.	2	2	2	2	2	Set 1	the 1 co	lumn tc	not 7,	
	f(4)	0.	1	2	3	4	5	0	Sd /	y5. 8	•••	
	<i>f</i> (5)	0.	9	8	7	6	5	4	3	2	•••	
	<i>f</i> (6)	0.	8	2	7	6	4	5	7	4		
	£(7)	^	r.	0	4	2	7	5	1	7		
7	3				•••	•••	•••		•••	•••	•••	

	Number	Digits after decimal	0	1	2	3	4	5	6	7		
	<i>f</i> (0)	0.	3	3	3	3	3	Well le	et's mak	e sure v	whateve	ېr
	<i>f</i> (1)	0.	2	7	2	7	2	our r	number	is, it's n	ot $f(2)$	
	<i>f</i> (2)	0.	1	4	1	5	9					
	<i>f</i> (3)	0.	2	2	2	2	2	Set	the 2 cc	olumn to	d not 1,	
	<i>f</i> (4)	0.	1	2	3	4	5	0	50	y/. Ծ	•••	
	<i>f</i> (5)	0.	9	8	7	6	5	4	3	2	•••	
	<i>f</i> (6)	0.	8	2	7	6	4	5	7	4	•••	
	£(7)	•	F	0	4	2	7	5	1	7		
7	37									•••		

Proof that [0,1) is not countable \bigcirc

	Number	Digits after decimal	0	1	2	3	4	5	6	7	
	f(0)	0.	3	3	3	3	3	Flippi	na Rule	: let's se	t the i^{th}
	f(1)	0.	2	7) 2	7	2		colu	imn to:	
	<i>f</i> (2)	0.	1	4		5	9	_7 if <i>f</i> ((i) 's i^{th}	column	is not 7
	<i>f</i> (3)	0.	2	2	2	2	2	3 if j	$f(i)'s i^{t}$	th colun	nn is 7.
	f(4)	0.	1	2	3	4	5	0	/	ð	
	<i>f</i> (5)	0.	9	8	7	6	5	4	3	2	
	<i>f</i> (6)	0.	8	2	7	6	4	5	X	4	
V	CHT.	0	r -		4	2	7	5	1	7	\···
0.7	37777	33			•••	•••	•••	•••	•••		f

Wrapping Up

0.73777733...

What is it?

It's a real number between 0 and 1(!!!)

Is the number on the list? Well it's not f(0), they differ in column 0.

It's not f(1), they differ in column 1.

It's not f(i), they differ in column i.

But...f was a bijection. That's a contradiction!

Diagonalization

This proof technique is called **diagonalization**

Often "Cantor's Diagonalization" (after Cantor, who developed it).

Takeaway 1

There are differing levels of infinity.

Some infinite sets are equal in size.

Other infinite sets are bigger than others.

If this is mind-bending you're in good company.

Cantor's contemporaries accused him of being a "scientific charlatan" and a "corruptor of youth"

But Cantor was right – and his ideas eventually were recognized as correct.

Let's Do Another!

Let $B = \{0,1\}$. Call a function $\underline{q} \colon \mathbb{N} \to B$ a "binary valued function"

Intuitively, *g* would be something like public boolean g(BigInteger input){ }

If we could write that g in Java.

How many possible $g: \mathbb{N} \to B$ are there?

	f bijection from $\mathbb N$ to function	Output on 0	Output on 1	Output on 2	Output on 3	Output on 4	Output on 5	Output on 6	Output on 7	
	f(0)	1	0	1 (1	0	1	1	
\mathbf{i}	f(1)	0	1	1 (0	0	1	0	0	•••
	<i>f</i> (2)	1	1	1 (0	0	0	1	1	
	<i>f</i> (3)	0	0	0	0	0	0	0	0	•••
	f(4)	1	0	1	1	1	0	1	1	
	<i>f</i> (5)	0	0	0	1	0	1	1	1	•••
	<i>f</i> (6)	1	1	0	1	0	1	1	0	
	<i>f</i> (7)	0	2	0	1	1	0	1	0	•••
	•••		•••	•••	•••	•••			•••	

f bijection from $\mathbb N$ to function	Output on 0	Output on 1	Output on 2	Output on 3	Output on 4	Output on 5	Output on 6	Output on 7		
<i>f</i> (0)	1	0	1	1						
f(1)	0	1	1	0	Goal:	find a f	function	g_{diag}	$\mathbb{N} \to \{0, 1\}$	1}
<i>f</i> (2)	1	1	1	0		that I	sn't on diction [·]	our tab to hijec	le. tion)	
<i>f</i> (3)	0	0	0	0		(contra	arction			
f(4)	1	0	1	1	1	U	1	1	•••	
f(5)	0	0	0	1	0	1	1	1	•••	
<i>f</i> (6)	1	1	0	1	0	1	1	0		
<i>f</i> (7)	0	2	0	1	1	0	1	0	•••	
		•••	•••						•••	

Suppose, for the sake of contradiction, that there is a list of them:

j f f	^F bijection rom ℕ to unction		Output on 0	Output on 1	Output on 2	Output on 3	Output on 4	Output on 5	Output on 6	Output on 7	•••
I	<i>f</i> (0)		1	0	1	1	Ηον	v do we	e find a	functior	n not or
	<i>f</i> (1)		0	1	1	0		to mal	our li	st?	f(0) (th
	<i>f</i> (2)		1	1	1	0	vven	functio	on in th	e first ro	(U) (U) SW)
	<i>f</i> (3)		0	0	0	0		Hav	/e g _{diag}	(0) = 0)
	<i>f</i> (4)		1	0	1	1	1	U	1	I	•••
	<i>f</i> (5)		0	0	0	1	0	1	1	1	•••
ť.	(0.if	~	_ 1	1	0	1	0	1	1	0	•••
<u>a</u> a($(x) = \begin{cases} 0 \ l \\ - \end{cases}$	- <i>x</i> ·		2	0	1	1	0	1	0	•••
				•••	•••	•••	•••	•••	•••	•••	•••

 g_d

Suppose, for the sake of contradiction, that there is a list of them:

j f f	^F bijection rom ℕ to unction		Output on 0	Output on 1	Output on 2	Output on 3	Output on 4	Output on 5	Output on 6	Output on 7	•••
I	<i>f</i> (0)		1	0	1	1	Ηον	w do we	e find a	functior	n not or
	<i>f</i> (1)		0	1	1	0		to mal	our li	st?	f(0) (th
	<i>f</i> (2)		1	1	1	0	vven	functio	on in th	e first ro	(U) (U) SW)
	<i>f</i> (3)		0	0	0	0		Hav	/e g _{diag}	(0) = 0)
	<i>f</i> (4)		1	0	1	1	1	U	1	I	•••
	<i>f</i> (5)		0	0	0	1	0	1	1	1	•••
ť.	(0.if	~	_ 1	1	0	1	0	1	1	0	•••
<u>a</u> a($(x) = \begin{cases} 0 \ l \\ - \end{cases}$	- <i>x</i> ·		2	0	1	1	0	1	0	•••
				•••	•••	•••	•••	•••	•••	•••	•••

 g_d

Suppose, for the sake of contradiction, that there is a list of them:

	f bijection from $\mathbb N$ to function		Output on 0	Output on 1	Output on 2	Output on 3	Output on 4	Output on 5	Output on 6	Output on 7	
	<i>f</i> (0)		1	0	1	1	Ηον	w do we	e find a	functior	n not on
	f(1)		0	1	1	0		l to mal	our lis	st? it'c pot	f(;)(+h
	<i>f</i> (2)		1	1	1	0	००२१	functi	on in th	ne i th rc) W)
	<i>f</i> (3)		0	0	0	0		Have g_d	$a_{iag}(i) =$	= 1 - f((i)(i)
	f(4)		1	0	1	1	1	U	1	1	•••
	f(5)		0	0	0	1	0	1	1	1	•••
Ľ,	$\left(\bigcap_{i \in I} \right)$	× -	- 1	1	0	1	0	1	1	0	•••
10	$(x) = \begin{cases} 0 \ i j \end{cases}$	- <i>x</i> -		2	0	1	1	0	1	0	•••
~9				•••	•••	•••	•••	•••	•••	•••	•••

 g_d

Wrapping up the proof

Wrapping up the proof.

Observe that g_{diag} is a fully-defined function, and that it has N as its domain and $\{0,1\}$ as its codomain. It therefore should be in the codomain of f. But it cannot be on the list, as g(i) is different from the function in the i^{th} row on input i for all i.

This contradicts f being onto! So we have that the set of binary-valued functions (with \mathbb{N} as their domains) is uncountable.

Our Second big takeaway

How many Java methods can we write:

public boolean g(int input)?

Can you list them? Yeah!! Put them in **lexicographic** order i.e. in increasing order of length, with ties broken by alphabetical order.

Wait...that means the number of such Java programs is countable. And...the number of functions we're supposed to write is uncountable.

Our Second big takeaway

There are more functions $g: \mathbb{N} \to B$ than there are Java programs to compute them.

Some function must be **uncomputable**.

That is there is no piece of code which tells you the output of the function when you give it the appropriate input.

Not just Java

This isn't just about java programs. (all we used about java was that its programs are strings)...that's...well every programming language.

There are functions that simply cannot be computed.

Doesn't matter how clever you are. How fancy your new programming language is. Just doesn't work.*

*there's a difference between int and N here, for the proof to work you really need all integers to be valid inputs, not just integers in a certain range.

Does this matter?

It's even worse than that – almost all functions are not computable.

So...how come this has never happened to you?

This might not be meaningful yet. Almost all functions are also inexpressible in a finite amount of English (English is a language too!)

You've probably never decided to write a program that computes a function you couldn't describe in English...

Are there any problems anyone is **interested** in solving that aren't computable?

A Practical Uncomputable Problem

Ever pressed the run button on your code and have it take a long time?

Like an infinitely long time?

What didn't your compiler...like, tell you **not** to push the button yet. It tells you when your code doesn't compile before it runs it...why doesn't it check for infinite loops?

The Halting Problem

The Halting Problem

Given: source code for a program P and x an input we could give to PReturn: True if P will halt on x, False if it runs forever (e.g. goes in an infinite loop or infinitely recurses)

This would be super useful to solve!

We can't solve it...let's find out why.

A Proof By Contradiction

Suppose, for the sake of contradiction, there is a program H, which given input P.java, x will accurately report

"P would halt when run with input x" or

 $\neg P$ will run forever on input x."

Important: *H* does not just compile P. java and run it. To count, *H* needs to return "halt" or "doesn't" in a finite amount of time.

And remember, it's not a good idea to say "but *H* has to run P.java to tell if it'll go into an infinite loop" that's what we're trying to prove!!

A Very Tricky Program.

Diagonal.java(String x) { Run H.exe on input <x, x> if (H.exe says "x halts on x'') while(true){//Go into an infinite loop int x=2+2; else //H.exe says "x doesn't halt on x" return; //halt.

So, uhh that's a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let's assume it does and see what happens...

So, uhh that's a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let's assume it does and see what happens... That didn't work.

Let's assume it doesn't and see what happens...

A Very Tricky Program.

Diagonal.java(String x) { And it halts Run H.exe on input <x, x> if (H.exe says "x halts on x'') Wait shoot. while(true){//Go into an infinite loop int x=2+2; else //H.exe says "x doesn't halt on x" return; //halt.

Imagine Diagonal.java doesn't halt on Diagonal.java. Then H better say it doesn't halt. So we go into the else branch. And it halts

So, uhh that's a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let's assume it does and see what happens... That didn't work.

Let's assume it doesn't and see what happens... That didn't work either.

There's no third option. It either halts or it doesn't. And it doesn't do either. That's a contradiction! H.exe can't exist.

So there is no general-purpose algorithm that decides whether any input program (on any input string).

The Halting Problem is undecidable (i.e. uncomputable) there is no algorithm that solves every instance of the problem correctly.

What that does and doesn't mean

That doesn't mean that there aren't algorithms that often get the answer right

For example, if there's no loops, no recursion, and no method calls, it definitely halts. No problem with that kind of program existing.

This isn't just a failure of computers – if you think **you** can do this by hand, well... ...you cant either.

Takeaways

Don't expect that there's a better IDE/better compiler/better programming language coming that will make it possible to tell if your code is going to hit an infinite loop.

It's not coming.

More Uncomputable problems

Imagine we gave the following task to 121 students:

Write a program that prints "Hello World"

Can you make an autograder?

Technically...NO!

More Uncomputable problems

Imagine we gave the following task to 121 students:

Write a program that prints "Hello World"

Can you make an autograder?

Technically...NO!

In practice, we declare the program wrong if it runs for 1 minute or so. That's not right 100% of the time, but it's good enough for your programming classes.

How Would we prove that?

With a reduction

Suppose, for the sake of contradiction, I can solve the HelloWorld problem. (i.e. on input P.java I can tell whether it eventually prints HelloWorld)

Let W.exe solve that problem.

Consider this program...

A Reduction

```
Trick(P,x) {
```

}

```
Run P on x, //(but only simulate printing if P prints things)
Print "Hello World"
```

This actually prints "hello world" iff P halts on x. Plug Trick into W and....we solved the Halting Problem!

Reductions in General

The big idea for reductions is "reusing code"

Just like calling a library

But doing it in contrapositive form.

Instead of

"If I have a library, then I can solve a new problem" reductions do the contrapositive: "If I can solve a problem I know I shouldn't be able to, then that library function can't exist"

Fun (Scary?) Fact

Rice's Theorem

Says any "non-trivial" behavior of programs cannot be computed (in finite time).

What Comes next?

CSE 312 (foundations II)

Fewer proofs ⊗

Basics of probability theory (super useful in algorithms, ML, and just everyday life). Fundamental statistics.

CSE 332 (data structures and parallelism)

Data structures, a few fundamental algorithms, parallelism.

Graphs. Graphs everywhere.

Also, induction. [same for 421, 422 the algorithms courses]

CSE 431 (complexity theory)

What can't you do with computers **in a reasonable amount of time**. Beautiful theorems – more on CFGs, DFAs/NFAs as well.

We've Covered A LOT

Propositional Logic.

Boolean logic and circuits.

Boolean algebra. You'll use quantifiers in 332 to define big-O

Predicates, quantifiers and predicate logic.

Inference rules and formal proofs for propositional and predicate logic. English proofs.

Set theory. 431 is basically 10 weeks of fun set proofs.

Modular arithmetic.

Prime numbers. Interested in crypto? They'll come back.

GCD, Euclid's algorithm and modular inverse

No really. A lot

Induction and Strong Induction.

Recursively defined functions and sets.

Structural induction.

Regular expressions.

You'll see these in compilers

Lots of induction proof [sketches] in 332

Context-free grammars and languages.

Relations and composition.

Transitive-reflexive closure.

Graph representation of relations and their closures. You'll use graphs at least once a week for the rest of your CS career.

Like A lot a lot.

DFAs, NFAs and language recognition. Cross Product construction for DFAs. Finite state machines with outputs at states. Conversion of regular expressions to NFAs. Powerset construction to convert NFAs to DFAs. Equivalence of DFAs, NFAs, Regular Expressions Method to prove languages not accepted by DFAs. Cardinality, countability and diagonalization Undecidability: Halting problem and evaluating properties of programs.

Promise you won't ever try to solve the Halting Problem? It's tempting to try to sometimes if you don't remember it's undecidable