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Lecture 26



Bijection

A bijection maps every element of the domain to exactly one element of 
the co-domain, and every element of the domain to exactly one 
element of the domain.

A function 𝒇 is one-to-one iff

∀𝒂∀𝒃(𝒇 𝒂 = 𝒇 𝒃 → 𝒂 = 𝒃)

One-to-one (aka injection)

A function 𝒇: 𝑨 → 𝑩 is onto iff

∀𝒃 ∈ 𝑩∃𝒂 ∈ 𝑨(𝒃 = 𝒇(𝒂))

Onto (aka surjection)

A function 𝒇: 𝑨 → 𝑩 is a bijection iff

𝒇 is one-to-one and onto

Bijection



Definition

This matches our intuition on finite sets.

But it also works for infinite sets!

Let’s see just how infinite these sets are.

Two sets 𝑨,𝑩 have the same size (same cardinality) 

if and only if there is a bijection 𝒇: 𝑨 → 𝑩



Countable

ℕ, ℤ, {𝑥: 𝑥 is an even integer} are all countable. 

The set 𝐴 is countable iff there is an injection from 𝑨 to ℕ, 

Equivalently, 𝑨 is countable iff it is finite or there is a 

bijection from 𝑨 to ℕ

Countable



Let’s Try one that’s a little harder

What about ℚ. There’s gotta be more of those right?

It’s pretty intuitive to think there are more rationals than integers.

The rationals are dense.

Between every two rationals, there’s another rational number.

Or said in more intimidating fashion: between every two rationals there 
are infinitely many others!



The set of positive rational numbers

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5 ....

... ... ... ... ...



In bijection with the natural numbers

Order the rationals by their denominator (increasing), breaking ties by 
numerator. 

1/1, 1/2, 1/3,2/3,1/4,3/4,1/5,2/5,3/5,4/5,1/6, …

𝑓 𝑥 =the 𝑥th number in that list (indexed from 0)

That’s a bijection from ℕ to ℚ+(it’s not a nice clean formula, but it’s 
definitely a function)



In Bijection with the natural numbers

How do we get all of ℚ?

We already know how to “get twice as many” – map the even naturals 
to positives, and the odds to negatives. Like when we were mapping ℕ
to ℤ.

Fun fact: 

The “order via diagonals” technique is closely related to “dovetailing” a 
super-useful technique in compuatability theory (take 431 to learn 
more)



Uncountable

Alright. There are clever ways to build bijections. 

Is there anything that’s bigger than ℕ?

And…like…how would we prove it?



A proof idea

A set is countable iff it can be listed (a list is a bijection with ℕ).

We’ll take advantage of that to find an uncountable set.

Claim ℝ is uncountable.

Actually, it’s easier if we show [0,1) is uncountable (i.e. real numbers 
between 0 and 1).



What do real numbers look like

0. 3 3 3 3 3 3 3 3…

0. 2 7 2 7 2 8 5 4…

0. 1 4 1 5 9 2 6 5…

0. 2 2 2 2 2 2 2 2…

0. 1 2 3 4 5 6 7 8…

0. 9 8 7 6 5 4 3 2…

0. 8 2 7 6 4 5 7 4…

0. 5 9 4 2 7 5 1 7…

A string of digits!

Well not a “string” An 

infinitely long sequence of 

digits is more accurate.



Uncountable

Suppose, for the sake of contradiction, that [0,1) is countable.

Then there is a bijection 𝑓: ℕ → [0,1).

Use that bijection to make the following table…



Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits 

after 

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …



Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits 

after 

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Goal: find a real number 

between 0 and 1 that isn’t on 

our table.

(contradiction to bijection)



Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits 

after 

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

How do we find a number 

that’s not in our list? 

Well let’s make sure whatever 

our number is, it’s not 𝑓(0)



Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits 

after 

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Well let’s make sure whatever 

our number is, it’s not 𝑓(0)

Set the 0 column to not 3, 

say…7.

0.7



Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits 

after 

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Well let’s make sure whatever 

our number is, it’s not 𝑓(1)

Set the 1 column to not 7, 

say…3.

0.73



Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits 

after 

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Well let’s make sure whatever 

our number is, it’s not 𝑓(2)

Set the 2 column to not 1, 

say…7.

0.737



Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits 

after 

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Flipping Rule: let’s set the 𝑖𝑡ℎ

column to:

𝟕 if 𝒇(𝒊)’s 𝒊𝒕𝒉 column is not 𝟕
𝟑 if 𝒇 𝒊 ′𝒔 𝒊𝒕𝒉 column is 𝟕.

0.73777733…



Wrapping Up

0.73777733…

What is it? 

It’s a real number between 0 and 1(!!!)

Is the number on the list? Well it’s not 𝑓(0), they differ in column 0.

It’s not 𝑓 1 , they differ in column 1.

It’s not 𝑓(𝑖), they differ in column 𝑖.

But…𝑓 was a bijection. That’s a contradiction!



Diagonalization

This proof technique is called diagonalization

Often “Cantor’s Diagonalization” (after Cantor, who developed it).



Takeaway 1

There are differing levels of infinity.

Some infinite sets are equal in size.

Other infinite sets are bigger than others. 

If this is mind-bending you’re in good company.

Cantor’s contemporaries accused him of being a “scientific charlatan” 
and a “corruptor of youth”

But Cantor was right – and his ideas eventually were recognized as 
correct.



Let’s Do Another!

Let 𝐵 = 0,1 . Call a function 𝑔:ℕ → 𝐵 a “binary valued function”

Intuitively, 𝑔 would be something like
public boolean g(BigInteger input){ }

If we could write that 𝑔 in Java.

How many possible 𝑔:ℕ → 𝐵 are there?



Proof that [0,1) set of binary-valued 
functions is not countable
Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to 

function

Output 

on 𝟎
Output 

on 1

Output 

on 2

Output 

on 3

Output 

on 4

Output 

on 5

Output 

on 6

Output 

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to 

function

Output 

on 𝟎
Output 

on 1

Output 

on 2

Output 

on 3

Output 

on 4

Output 

on 5

Output 

on 6

Output 

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

Goal: find a function 𝑔𝑑𝑖𝑎𝑔: ℕ → 0,1

that isn’t on our table.

(contradiction to bijection)

Proof that [0,1) set of binary-valued functions 
is not countable



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to 

function

Output 

on 𝟎
Output 

on 1

Output 

on 2

Output 

on 3

Output 

on 4

Output 

on 5

Output 

on 6

Output 

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on 

our list?

Well to make sure it’s not 𝑓(0) (the 

function in the first row)

Have 𝑔𝑑𝑖𝑎𝑔 0 = 0

Proof that [0,1) set of binary-valued functions 
is not countable

𝑔𝑑𝑖𝑎𝑔 𝑥 = ቐ
0 𝑖𝑓 𝑥 = 1

…
…



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to 

function

Output 

on 𝟎
Output 

on 1

Output 

on 2

Output 

on 3

Output 

on 4

Output 

on 5

Output 

on 6

Output 

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on 

our list?

Well to make sure it’s not 𝑓(0) (the 

function in the first row)

Have 𝑔𝑑𝑖𝑎𝑔 0 = 0

Proof that [0,1) set of binary-valued functions 
is not countable

𝑔𝑑𝑖𝑎𝑔 𝑥 = ቐ
0 𝑖𝑓 𝑥 = 1

…
…



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to 

function

Output 

on 𝟎
Output 

on 1

Output 

on 2

Output 

on 3

Output 

on 4

Output 

on 5

Output 

on 6

Output 

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on 

our list?

Well to make sure it’s not 𝑓(𝑖) (the 

function in the 𝑖𝑡ℎ row)

Have 𝑔𝑑𝑖𝑎𝑔 𝑖 = 1 − 𝑓 𝑖 𝑖

Proof that [0,1) set of binary-valued functions 
is not countable

𝑔𝑑𝑖𝑎𝑔 𝑥 = ቐ
0 𝑖𝑓 𝑥 = 1

…
…



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to 

function

Output 

on 𝟎
Output 

on 1

Output 

on 2

Output 

on 3

Output 

on 4

Output 

on 5

Output 

on 6

Output 

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on 

our list?

Well to make sure it’s not 𝑓(𝑖) (the 

function in the 𝑖𝑡ℎ row)

Have 𝑔𝑑𝑖𝑎𝑔 𝑖 = 1 − 𝑓 𝑖 𝑖

Proof that [0,1) set of binary-valued functions 
is not countable

𝑔𝑑𝑖𝑎𝑔 𝑥 = ቐ
1 𝑖𝑓 𝑓 𝑥 outputs 0 on input 𝑥

0 𝑖𝑓 𝑓 𝑥 outputs 0 on input 𝑥



Wrapping up the proof

Wrapping up the proof.

Observe that 𝑔𝑑𝑖𝑎𝑔 is a fully-defined function, and that it has ℕ as its 
domain and {0,1} as its codomain. It therefore should be in the co-
domain of 𝑓. But it cannot be on the list, as 𝑔(𝑖) is different from the 
function in the  𝑖𝑡ℎ row on input 𝑖 for all 𝑖.

This contradicts 𝑓 being onto! So we have that the set of binary-valued 
functions (with ℕ as their domains) is uncountable.



Our Second big takeaway

How many Java methods can we write:

public boolean g(int input) ?

Can you list them?

Yeah!! Put them in lexicographic order

i.e. in increasing order of length, with ties broken by alphabetical order.

Wait…that means the number of such Java programs is countable.

And…the number of functions we’re supposed to write is uncountable.



Our Second big takeaway

There are more functions 𝑔:ℕ → 𝐵 than there are Java programs to 
compute them.

Some function must be uncomputable.

That is there is no piece of code which tells you the output of the 
function when you give it the appropriate input. 



Not just Java

This isn’t just about java programs. (all we used about java was that its 
programs are strings)…that’s…well every programming language.

There are functions that simply cannot be computed.

Doesn’t matter how clever you are. How fancy your new programming 
language is. Just doesn’t work.*

*there’s a difference between int and ℕ here, for the proof to work you 
really need all integers to be valid inputs, not just integers in a certain range.



Does this matter?

It’s even worse than that – almost all functions are not computable.

So…how come this has never happened to you?

This might not be meaningful yet. Almost all functions are also 
inexpressible in a finite amount of English (English is a language too!)

You’ve probably never decided to write a program that computes a 
function you couldn’t describe in English…

Are there any problems anyone is interested in solving that aren’t 
computable?



The Halting Problem



A Practical Uncomputable Problem

Ever pressed the run button on your code and have it take a long time?

Like an infinitely long time?

What didn’t your compiler…like, tell you not to push the button yet. 

It tells you when your code doesn’t compile before it runs it…why 
doesn’t it check for infinite loops?



The Halting Problem

This would be super useful to solve!

We can’t solve it…let’s find out why.

Given: source code for a program 𝑷 and 𝒙 an input we could give to 𝑷
Return: True if 𝑷 will halt on 𝒙, False if it runs forever (e.g. goes in an 

infinite loop or infinitely recurses)

The Halting Problem



A Proof By Contradiction

Suppose, for the sake of contradiction, there is a program 𝐻, which 
given input P.java, 𝑥 will accurately report 

“𝑃 would halt when run with input 𝑥” or

“𝑃 will run forever on input 𝑥.”

Important: 𝐻 does not just compile P.java and run it. To count, 𝐻
needs to return “halt” or “doesn’t” in a finite amount of time. 

And remember, it’s not a good idea to say “but 𝐻 has to run P.java to tell 
if it’ll go into an infinite loop” that’s what we’re trying to prove!!



A Very Tricky Program.

Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}



So, uhh that’s a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…



A Very Tricky Program.

Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}

Imagine Diagonal.java halts on 

Diagonal.java.

Then H better say it halts. 

So it goes into an infinite loop.

Wait shoot.



So, uhh that’s a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…
That didn’t work.

Let’s assume it doesn’t and see what happens…



A Very Tricky Program.

Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}

Imagine Diagonal.java doesn’t 

halt on Diagonal.java.

Then H better say it doesn’t halt. 

So we go into the else branch.

And it halts

Wait shoot.



So, uhh that’s a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…
That didn’t work.

Let’s assume it doesn’t and see what happens…
That didn’t work either.

There’s no third option. It either halts or it doesn’t. And it doesn’t do 
either. That’s a contradiction! H.exe can’t exist.



So…

So there is no general-purpose algorithm that decides whether any 
input program (on any input string).

The Halting Problem is undecidable (i.e. uncomputable) there is no 
algorithm that solves every instance of the problem correctly.



What that does and doesn’t mean

That doesn’t mean that there aren’t algorithms that often get the 
answer right
For example, if there’s no loops, no recursion, and no method calls, it definitely 
halts. No problem with that kind of program existing.

This isn’t just a failure of computers – if you think you can do this by 
hand, well…

…you cant either.



Takeaways

Don’t expect that there’s a better IDE/better compiler/better 
programming language coming that will make it possible to tell if your 
code is going to hit an infinite loop.

It’s not coming. 



More Uncomputable problems

Imagine we gave the following task to 121 students:

Write a program that prints “Hello World” 

Can you make an autograder?

Technically…NO! 



More Uncomputable problems

Imagine we gave the following task to 121 students:

Write a program that prints “Hello World” 

Can you make an autograder?

Technically…NO!

In practice, we declare the program wrong if it runs for 1 minute or so. 
That’s not right 100% of the time, but it’s good enough for your 
programming classes. 



How Would we prove that?

With a reduction

Suppose, for the sake of contradiction, I can solve the HelloWorld 
problem. (i.e. on input P.java I can tell whether it eventually prints 
HelloWorld)

Let W.exe solve that problem. 

Consider this program…



A Reduction

Trick(P,x){

Run P on x, //(but only simulate printing if P prints things)

Print “Hello World”

}

This actually prints “hello world” iff P halts on x. 

Plug Trick into W and….we solved the Halting Problem!



Reductions in General

The big idea for reductions is “reusing code”

Just like calling a library

But doing it in contrapositive form.

Instead of

“If I have a library, then I can solve a new problem” reductions do the 
contrapositive:
“If I can solve a problem I know I shouldn’t be able to, then that library 
function can’t exist” 



Fun (Scary?) Fact

Rice’s Theorem

Says any “non-trivial” behavior of programs cannot be computed (in 
finite time). 



What Comes next?

CSE 312 (foundations II)
Fewer proofs 

Basics of probability theory (super useful in algorithms, ML, and just everyday life). 
Fundamental statistics.

CSE 332 (data structures and parallelism) 
Data structures, a few fundamental algorithms, parallelism.

Graphs. Graphs everywhere.

Also, induction. [same for 421, 422 the algorithms courses]

CSE 431 (complexity theory)
What can’t you do with computers in a reasonable amount of time.

Beautiful theorems – more on CFGs, DFAs/NFAs as well.



We’ve Covered A LOT

Propositional Logic. 

Boolean logic and circuits.

Boolean algebra.

Predicates, quantifiers and predicate logic.

Inference rules and formal proofs for propositional and predicate logic.

English proofs.

Set theory.

Modular arithmetic.

Prime numbers.

GCD, Euclid's algorithm and modular inverse

You’ll use quantifiers in 332 to define big-O

431 is basically 10 weeks of fun set proofs.

Interested in crypto? They’ll come back.



No really. A lot

Induction and Strong Induction.

Recursively defined functions and sets.

Structural induction.

Regular expressions.

Context-free grammars and languages.

Relations and composition.

Transitive-reflexive closure.

Graph representation of relations and their closures.

Lots of induction proof [sketches] in 332

You’ll see these in compilers

You’ll use graphs at least once a week for 

the rest of your CS career. 



Like A lot a lot.

DFAs, NFAs and language recognition.

Cross Product construction for DFAs.

Finite state machines with outputs at states.

Conversion of regular expressions to NFAs.

Powerset construction to convert NFAs to DFAs.

Equivalence of DFAs, NFAs, Regular Expressions 

Method to prove languages not accepted by DFAs.

Cardinality, countability and diagonalization

Undecidability: Halting problem and evaluating properties of programs.

Promise you won’t ever try to solve the Halting Problem? It’s 

tempting to try to sometimes if you don’t remember it’s 

undecidable


