1. Divisibility

- (a) Circle the statements below that are true. Recall for $a, b \in \mathbb{Z}$: $a \mid b$ if and only if $\exists k \in \mathbb{Z}$ such that b = ka.
 - (i) 1 | 3
 - (ii) 3 | 1
 - (iii) 2 | 2018
 - (iv) $-2 \mid 12$
 - (v) $1 \cdot 2 \cdot 3 \cdot 4 \mid 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
- (b) Circle the statements below that are true. Recall for $a, b, m \in \mathbb{Z}$ and m > 0: $a \equiv b \pmod{m}$ if and only if $m \mid (a b)$.
 - (i) $-3 \equiv 3 \pmod{3}$
 - (ii) $0 \equiv 9000 \pmod{9}$
 - (iii) $44 \equiv 13 \pmod{7}$
 - (iv) $-58 \equiv 707 \pmod{5}$
 - (v) $58 \equiv 707 \pmod{5}$

2. Just The Setup

For each of these statements,

- Translate the sentence into predicate logic.
- Write the first few sentences and last few sentences of the English proof.
- (a) The product of an even integer and an odd integer is even.
- (b) There is an integer x s.t. $x^2 > 10$ and 3x is even.
- (c) For every integer n, there is a prime number p greater than n.

3. Modular Arithmetic

- (a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers greater than 0, then a = b or a = -b.
- (b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

4. Become a Mod God

Prove from definitions that for integers a, b, c, d and positive integer m, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a - c \equiv b - d \pmod{m}$.

5. Fair and Square

(a) Prove that for all integers $n,\,n^2\equiv 0 \pmod{4}$ or $n^2\equiv 1 \pmod{4}$.

6. Even Numbers, Odd Results!

For any integer j, if 3j + 1 is even, then j is odd

(a) Write the predicate logic of this claim

Odd(x) := x is 2k + 1, for some integer k Even(x) := x is 2k, for some integer k

- (b) Write the contrapositive of this claim
- (c) Determine which claim is easier to prove, then prove it!

7. The Trifecta

Consider the following proposition: For each integer a, if 3 divides a^2 , then 3 divides a

- (a) Write the contrapositive of this proposition as a sentence:
- (b) Prove the proposition by proving its contrapositive. Hint: Consider using cases based on the Division Algorithm using the remainder for "division by 3." There will be two cases!