## Section 04: Solutions

## 1. Divisibility

(a) Circle the statements below that are true. Recall for $a, b \in \mathbb{Z}: a \mid b$ if and only if $\exists k \in \mathbb{Z}$ such that $b=k a$.
(i) $1 \mid 3$
(ii) $3 \mid 1$
(iii) $2 \mid 2018$
(iv) $-2 \mid 12$
(v) $1 \cdot 2 \cdot 3 \cdot 4 \mid 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$

Solution:
(i) True
(ii) False
(iii) True
(iv) True
(v) True
(b) Circle the statements below that are true. Recall for $a, b, m \in \mathbb{Z}$ and $m>0: a \equiv b(\bmod m)$ if and only if $m \mid(a-b)$.
(i) $-3 \equiv 3(\bmod 3)$
(ii) $0 \equiv 9000(\bmod 9)$
(iii) $44 \equiv 13(\bmod 7)$
(iv) $-58 \equiv 707(\bmod 5)$
(v) $58 \equiv 707(\bmod 5)$

Solution:
(i) True
(ii) True
(iii) False
(iv) True
(v) False

## 2. Just The Setup

For each of these statements,

- Translate the sentence into predicate logic.
- Write the first few sentences and last few sentences of the English proof.
(a) The product of an even integer and an odd integer is even.


## Solution:

```
\forallx\forally([Even (x)^ Odd(y)] }->\mathrm{ Even (xy))
```

Let $x$ be an arbitrary even integer and let $y$ be an arbitrary odd integer.
...
So $x y$ is even.
Since $x, y$ were arbitrary, we have that the product of an even integer with an odd integer is always even.
(b) There is an integer $x$ s.t. $x^{2}>10$ and $3 x$ is even.

Solution:

```
\existsx[GreaterThan10( (x ) ^ Even(3x)]
Consider }x=6
So 6}\mp@subsup{6}{}{2}>10\mathrm{ and 3.6 is even.
Hence, 6 is the desired }x\mathrm{ .
```

(c) For every integer $n$, there is a prime number $p$ greater than $n$.

## Solution:

```
\forallx\existsy[Prime(y)^GreaterThan ( }y,x)
```

Let $x$ be an arbitrary integer.
Consider $y=p$ (this $p$ is a specific prime).
So $p$ is prime and $p>x$.
Since $x$ was arbitrary, we have that every integer has a prime number that is greater than it.

## 3. Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where $a$ and $b$ are integers greater than 0 , then $a=b$ or $a=-b$. Solution:

Suppose that $a \mid b$ and $b \mid a$, where $a, b$ are arbitrary integers greater than 0 . By the definition of divides, we have $a \neq 0, b \neq 0$ and $b=k a, a=j b$ for some integers $k, j$. Substituting this equation, we see that $a=j(k a)$.
Then, dividing both sides by $a$, we get $1=j k$. So, $\frac{1}{j}=k$. Note that $j$ and $k$ are integers, which is only possible if $j, k \in\{1,-1\}$. Since $a$ and $b$ were arbitrary, it follows that $b=-a$ or $b=a$,
(b) Prove that if $n \mid m$, where $n$ and $m$ are integers greater than 1 , and if $a \equiv b(\bmod m)$, where $a$ and $b$ are integers, then $a \equiv b(\bmod n)$.

## Solution:

Let $n$ and $m$ be arbitrary integers.
Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$. By definition of divides, we have $m=k n$ for some
$k \in \mathbb{Z}$. By definition of congruence, we have $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$. Combining the two equations, we see that $a-b=(k n j)=n(k j)$. By definition of congruence, we have $a \equiv b(\bmod n)$, as required. Since $n$ and $m$ were arbitrary, the claim holds.

## 4. Become a Mod God

Prove from definitions that for integers $a, b, c, d$ and positive integer $m$, if $a \equiv b(\bmod \mathrm{~m})$ and $c \equiv d(\bmod \mathrm{~m})$, then $a-c \equiv b-d(\bmod m)$.

## Solution:

Let $a, b, c, d$ be arbitrary integers, and let $m$ be an arbitrary positive integer. Suppose that $a \equiv b$ (mod m) and $c \equiv d(\bmod \mathrm{~m})$. Then by the definition of congruence, $m \mid(a-b)$ and $m \mid(c-d)$.
By the definition of divides, there exist integers $k$ and $j$ such that $a-b=k m$ and $c-d=j m$. Subtracting the second equation from the first, we have:

$$
\begin{aligned}
(a-b)-(c-d) & =k m-j m \\
a-b-c+d & =(k-j) m \\
(a-c)-(b-d) & =(k-j) m
\end{aligned}
$$

Then by the definition of divides, $m \mid(a-c)-(b-d)$. Then by the definition of congruence, $a-c \equiv b-d(\bmod m)$, as desired.
Since $a, b, c, d$, and $m$ were arbitrary the claim holds.

## 5. Fair and Square

(a) Prove that for all integers $n, n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$. Solution:

Let $n$ be an arbitrary integer. We will argue by cases.
Case 1: $n$ is even. Then $n=2 k$ for some integer $k$. Then $n^{2}=(2 k)^{2}=4 k^{2}$. Since $k$ is an integer, $k^{2}$ is an integer. So $n^{2}$ is 4 times an integer. Then by definition of divides, $4 \mid n^{2}-0$. Then by definition of congruence, $n^{2} \equiv 0(\bmod 4)$. Since $n^{2} \equiv 0(\bmod 4)$, it follows that $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.

Case 2: $n$ is odd. Then $n=2 k+1$ for some integer $k$. Then $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1$. So $n^{2}-1=4\left(k^{2}+k\right)$. Since $k$ is an integer, $k^{2}+k$ is an integer. So $n^{2}-1$ is 4 times an integer. Then by definition of divides, $4 \mid n^{2}-1$. Then by definition of congruence, $n^{2} \equiv 1(\bmod 4)$. Since $n^{2} \equiv 1(\bmod 4)$, it follows that $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.

Thus in all cases, $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$. Since $n$ was arbitrary, the claim holds.

## 6. Even Numbers, Odd Results!

For any integer $j$, if $3 j+1$ is even, then $j$ is odd
(a) Write the predicate logic of this claim
$\operatorname{Odd}(\mathrm{x}):=\mathrm{x}$ is $2 k+1$, for some integer $k$
Even(x) := x is $2 k$, for some integer $k$
Solution:

```
|j (Even (3j + 1) }->\mathrm{ Odd( }j)
```

(b) Write the contrapositive of this claim

## Solution:

For any integer $j$, if $j$ is even, $3 \mathrm{k}+1$ is odd $\forall j(\operatorname{Even}(j) \rightarrow \operatorname{Odd}(3 j+1))$
(c) Determine which claim is easier to prove, then prove it! Solution:
we will prove the contrapositive of this claim
Let $j$ be an arbitrary even integer.
By the definition of even $j=2 k$ for some integer k
Then by Algebra, $3 j+1=3(2 k)+1=2(3 k)+1$
Since $k$ is an integer, under closure of multiplication, $3 k$ is an integer
Therefore $2(3 \mathrm{k})+1$ takes the form of an odd integer so $3 j+1$ must be odd Since $j$ was arbitrary and we have shown the contrapositive, the claim holds

## 7. The Trifecta

Consider the following proposition: For each integer a, if 3 divides $a^{2}$, then 3 divides $a$
(a) Write the contrapositive of this proposition as a sentence:

## Solution:

If 3 does not divide a then 3 does not divide $a^{2}$
(b) Prove the proposition by proving its contrapositive.

Hint: Consider using cases based on the Division Algorithm using the remainder for "division by 3." There will be two cases! Solution:

## we will prove the contrapositive of this claim

Let a be an arbitrary integer such that 3 does not divide a.
If a is not divisible by 3 , it can have a remainder of either 1 or 2

## Case 1: $\mathbf{a} \equiv 1(\bmod 3)$

a can be expressed as an integer with remainder 1 as: $\mathrm{a}=3 \mathrm{k}+1$, $a=3 k+1, k \in \mathbb{Z}$
Similarly, we define $a^{2}$ as $a \cdot a=(3 k+1) \cdot(3 k+1)=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1$ where $3 k^{2}+2 k$ is an integer under closure of addition and multiplication such that we produce an integer that is not divisible by 3.

## Case 2: $\mathbf{a} \equiv 2(\bmod 3)$

a can be expressed as an integer with remainder 2 as: $\mathrm{a}=3 \mathrm{k}+2, a=3 k+2, k \in \mathbb{Z}$
Similarly, we define $a^{2}$ as $a \cdot a=(3 k+2) \cdot(3 k+2)=9 k^{2}+12 k+4=9 k^{2}+12 k+3+1=3\left(3 k^{2}+4 k+1\right)+1$ where $3 k^{2}+4 k+1$ is an integer under closure of addition and multiplication such that we produce an integer that is not divisible by 3 .

In either case for integer a, we see that 3 does not divide $a^{2}$ and results in a remainder of 1 . Since a was arbitrary, and we have demonstrated the contrapositive, the claim holds

