CSE 311 Section 5

Induction

Administrivia

Announcements \& Reminders

- Homework 4 due yesterday
- Homework 5 is due Wednesday (2/7) @ 11:59pm
- There are TWO parts to this
- Read details on course website
- Upcoming Midterm: February 12th (Details TBD)
- If you cannot make it, please let us know ASAP and we will schedule you for a makeup
- Midterm Review: February 10th 1-3pm CSE2 G10

Assignments

Assignment Release Date Due date

Homework 1	Thur. January 4	Thur. January 11, 11:59pm
Homework2	Wed. Jan 10	Wed. January 17, 11:59pm
Homework3	Wed. Jan 17	Wed. January 25, 11:59pm
Homework4	Wed. Jan 24	Wed. January 31, 11:59pm
Homework5	Wed. Jan 31	Wed. Feb 7, 11:59pm

Typesetting

You are not required to typeset your homework solutions; however, it is an easy way to improve the legibility of your documents. Many Allen School students learned to typeset in this course.

LaTeX is the standard tool for typesetting mathematical materials. While it takes some time to learn, it will likely pay for itself in the long run. You can even use LaTeX in places like Ed and Facebook Messenger!

These resources may be helpful for you to get started with LaTeX, with thanks to Adam Blank:

- An updated homework template with instructions on how to latex as well as example problems for each of the types of problems we will have in this class.
- An older homework template that you can use. Here is a preview of the rendered result.
- A How to LaTeX tutorial, including specific information on how to use the old template.

Overleaf is an online editor that spares you from having to install LaTeX locally. Overleaf has some documentation, but you might want to read this how-to-overleaf document first.

Number Theory Warm Up

Problem 2

Prove that if $\mathrm{n} \mid \mathrm{m}$, where n and m are integers greater than 1 , and if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, where a and b are integers, then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$.

```
Equivalence in modular arithmetic
    Let }a\in\mathbb{Z},b\in\mathbb{Z},n\in\mathbb{Z}\mathrm{ and }n>0
    We say }a=b(\operatorname{mod}n)\mathrm{ if and only if n|(b-a)
```

```
Divides
For integers \(x, y\) we say \(x \mid y\) (" \(x\) divides \(y\) ") iff there is an integer \(\boldsymbol{z}\) such that \(\boldsymbol{x z}=\boldsymbol{y}\).
```


Problem 2

Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, where a and b are integers, then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$.

Let $\mathrm{n}, \mathrm{m}, \mathrm{a}$, and b be arbitrary integers.

Since n and m were arbitrary the claim holds.

Problem 2

Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, where a and b are integers, then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$.

Let $\mathrm{n}, \mathrm{m}, \mathrm{a}$, and b be arbitrary integers.
Suppose $\mathrm{n} \mid \mathrm{m}$ with $\mathrm{n}, \mathrm{m}>1$ and $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$

Since n and m were arbitrary the claim holds.

Problem 2

Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, where a and b are integers, then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$.

Let $\mathrm{n}, \mathrm{m}, \mathrm{a}$, and b be arbitrary integers.
Suppose $\mathrm{n} \mid \mathrm{m}$ with $\mathrm{n}, \mathrm{m}>1$ and $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$

By definition of congruence, we have $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$
Work 1-step backwards where you can! Since n and m were arbitrary the claim holds.

Problem 2

Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, where a and b are integers, then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$.

Let $\mathrm{n}, \mathrm{m}, \mathrm{a}$, and b be arbitrary integers.
Suppose $\mathrm{n} \mid \mathrm{m}$ with $\mathrm{n}, \mathrm{m}>1$ and $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
By the definition of divides, we have $\mathbf{m}=\mathbf{k n}$ for some integer k

By definition of congruence, we have $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ Since n and m were arbitrary the claim holds.

Problem 2

Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, where a and b are integers, then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$.

Let $\mathrm{n}, \mathrm{m}, \mathrm{a}$, and b be arbitrary integers.
Suppose $\mathrm{n} \mid \mathrm{m}$ with $\mathrm{n}, \mathrm{m}>1$ and $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
By the definition of divides, we have $\mathbf{m}=\mathbf{k n}$ for some integer k
By definition of congruence, we have $m \mid b-a$, which means that $b-a=m j$ for some integer j

By definition of congruence, we have $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$
Since n and m were arbitrary the claim holds.

Problem 2

Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, where a and b are integers, then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$.

Let $\mathrm{n}, \mathrm{m}, \mathrm{a}$, and b be arbitrary integers.
Suppose $\mathrm{n} \mid \mathrm{m}$ with $\mathrm{n}, \mathrm{m}>1$ and $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
By the definition of divides, we have $\mathbf{m}=\mathbf{k n}$ for some integer k
By definition of congruence, we have $m \mid b-a$, which means that $b-a=m j$ for some integer j
Combining the two equations, we see that $b-a=(k n j)=n(k j)$
By the definition of divides, we have that $\mathrm{n} \mid(\mathrm{b}-\mathrm{a})$

By definition of congruence, we have $a \equiv b(\bmod n)$
Since n and m were arbitrary the claim holds.

Climb the ladder!

You are scared of heights and there is a prize at the top of a very very tall ladder.

You do not want to climb this ladder...

Climb the ladder!

You are scared of heights and there is a prize at the top of a very very tall ladder.

You do not want to climb this ladder...

Lets convince your friend to climb it instead!!!

Climb the ladder!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

Climb the ladder!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"

Climb the ladder!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"

Climb the ladder!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"
Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

Climb the ladder!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"
Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

I can prove to you that this claim will still hold for $\mathrm{j}+1$ steps!
Goal: Prove that for $\mathbf{j}+\mathbf{1}$ steps in the ladder, after $\mathbf{j}+\mathbf{1}$ steps you will reach the top!

Climb the ladder!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"
Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

I can prove to you that this claim will still hold for $\mathrm{j}+1$ steps!
Goal: Prove that for $\mathbf{j}+\mathbf{1}$ steps in the ladder, after $\mathbf{j}+\mathbf{1}$ steps you will reach the top!
The total number of steps is $\mathrm{j}+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top!

Climb the ladder!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"
Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

I can prove to you that this claim will still hold for $\mathrm{j}+1$ steps!
Goal: Prove that for $\mathbf{j}+\mathbf{1}$ steps in the ladder, after $\mathbf{j}+\mathbf{1}$ steps you will reach the top!
The total number of steps is $j+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top! So of course you can reach j+1 steps!

Climb the ladder!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"
Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

I can prove to you that this claim will still hold for $\mathrm{j}+1$ steps!
Goal: Prove that for $\mathbf{j}+\mathbf{1}$ steps in the ladder, after $\mathbf{j}+\mathbf{1}$ steps you will reach the top!
The total number of steps is $\mathrm{j}+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!
THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

WELCOME TO PROOF BY INDUCTION

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"
Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

I can prove to you that this claim will still hold for $\mathrm{j}+1$ steps!
Goal: Prove that for $\mathbf{j}+\mathbf{1}$ steps in the ladder, after $\mathbf{j}+\mathbf{1}$ steps you will reach the top!
The total number of steps is $j+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!
THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

WELCOME TO PROOF BY INDUCTION

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you will reach the top of a 1 step ladder!"

Base
"So my claim holds for 1 step!" Case

Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

I can prove to you that this claim will still hold for $\mathrm{j}+1$ steps!
Goal: Prove that for $\mathbf{j}+\mathbf{1}$ steps in the ladder, after $\mathbf{j}+\mathbf{1}$ steps you will reach the top!
The total number of steps is $\mathrm{j}+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!
THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

WELCOME TO PROOF BY INDUCTION

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with 1 step. $\underline{\text { I know you can lift your foot so after } 1 \text { step you }}$	
will reach the top of a 1 step ladder!"	Base
"So my claim holds for 1 step!"	Case
Let's suppose that for an arbitrary number of steps j, after j steps you will reach the top. Inductive Hypothesis I can prove to you that this claim will still hold for $j+1$ steps! P(j)	

Goal: Prove that for $\mathbf{j}+1$ steps in the ladder, after $\mathbf{j}+1$ steps you will reach the top!
The total number of steps is $\mathrm{j}+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!
THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

WELCOME TO PROOF BY INDUCTION

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
$P(n)$

"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you	
will reach the top of a 1 step ladder!"	Base
"So my claim holds for 1 step!"	Case

Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

Inductive Hypothesis
can prove to you that this claim will still hold for $\mathrm{j}+1$ steps!
Goal: Prove that for $\mathbf{j}+1$ steps in the ladder, after $\mathbf{j}+1$ steps you will reach the top!
The total number of steps is $\mathrm{j}+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!

WELCOME TO PROOF BY INDUCTION

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
$P(n)$
"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!"
"So my claim holds for 1 step!"
Let's suppose that for an arbitrary number of steps j, after j steps you will reach
the top. the top.
to you that this claim will still hold for $j+1$ steps!
can pro
Goal: $\operatorname{Pr} \quad$ that for $\mathbf{j}+1$ steps in the ladder, after $\mathbf{j}+1$ steps you will reach the top!
The tota umber of steps is $\mathrm{j}+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!

Base Case

Inductive Hypothesis

WELCOME TO PROOF BY INDUCTION

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"
$P(n)$

"If we have a ladder with 1 step. I know you can lift your foot so after 1 step you	
will reach the top of a 1 step ladder!"	Base
"So my claim holds for 1 step!"	Case

Let's suppose that for an arbitrary number of steps j , after j steps you will reach the top.

Inductive Hypothesis
|can prove to you that this claim will still hold for $\mathrm{j}+1$ steps!
Goal: Prove that for $\mathbf{j + 1}$ steps in the ladder, after $\mathbf{j}+\mathbf{1}$ steps you will reach the top!
The total number of steps is $j+1$
Since we know \mathbf{j} of the $\mathbf{j}+1$ steps hold, if you started with your foot on the second step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)".
We show $P(n)$ holds for all n by induction on n.

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1))$

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all n by induction on n.

> Note: often you will condition n here, like "all natural numbers n " or " $n \geq 0$ "

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1))$

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.
Match the earlier condition on n in your conclusion!

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all n by induction on n.

\triangleP(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1)$)

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all n by induction on n.

P(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

Base Case: Show $P(b)$ is true.

\triangleYOU MUST INTRODUCE AN ARBITRARY VARIABLE IN YOUR IH
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1)$)

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all n by induction on n.

P(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

Base Case: Show $P(b)$ is true.

\triangleYOU MUST INTRODUCE AN ARBITRARY VARIABLE IN YOUR IH
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.
Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P\left(\right.$!) $\begin{array}{l}\begin{array}{l}\text { START WITH LHS OF } \\ \text { K+1 ONLY AND WORK } \\ \text { TOWARD RHS }\end{array} \\ \hline\end{array}$
Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

Problem 4 - Induction with Equality

a) Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
b) Define the triangle numbers as $\triangle_{n}=1+2+\cdots+n$, where $n \in \mathbb{N}$. In part (a) we showed $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}
$$

Lets walk through part (a) together.

We can "fill in" our induction template to construct our proof by induction.

Show using induction that

Problem 4 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Let $P(n)$ be "". We show $P(n)$ holds for (some) n by induction on n. Base Case: $P(b)$:
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.
Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

Show using induction that

Problem 4 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Base Case: $P(b)$:
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that

Problem 4 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds. Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that
Problem 4 - Induction with Equality $0+1+2+\cdots+n=\frac{n(n+1)}{2}$
 Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds. Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Prevents backwards reasoning: We need to go from LHS to Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction. RHS by "math" otherwise we are directly using the rule we want to prove

> Show using induction that

Problem 4 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

> Show using induction that

Problem 4 - Induction with Equality
 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

 Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that

Problem 4 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
 Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$
$0+1+\cdots+k+(k+1)=\cdots$

$$
=\frac{(k+1)(k+2)}{2}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that

Problem 4 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
 Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$
$0+1+\cdots+k+(k+1)=(0+1+\cdots+k)+(k+1)$

$$
=\frac{(k+1)(k+2)}{2}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that

Problem 4 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
 Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$

$$
\begin{align*}
0+1+\cdots+k+(k+1) & =(0+1+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& \cdots \\
& =\frac{(k+1)(k+2)}{2}
\end{align*} \text { by I.H. }
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Show using induction that

Problem 4 - Induction with Equality

$0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
 Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$
Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$

$$
\begin{align*}
0+1+\cdots+k+(k+1) & =(0+1+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2} \\
& \cdots \\
& =\frac{(k+1)(k+2)}{2}
\end{align*} \quad \text { by I.H. }
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

> Show using induction that

Problem 4 - Induction with Equality

Let $P(n)$ be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n. Base Case: $P(0): 0+\cdots=0=\frac{0(0+1)}{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0+1+2+\cdots+k=\frac{k(k+1)}{2}$ Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$

$$
\begin{aligned}
0+1+\cdots+k+(k+1) & =(0+1+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2} \\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

Problem 5 - Induction with Mod

Prove that the equivalence $4^{n} \equiv 1(\bmod 3)$ holds for all $n \in N$.

Spend around 10 minutes working through this proof with the people around you!

Problem 5 - Induction with Mod

Let $\mathrm{P}(n)$ be " ". We show $\mathrm{P}(n)$ holds for (some) n by induction on n. Base Case: $\mathrm{P}(b)$:
Inductive Hypothesis: Suppose $\mathrm{P}(k)$ holds for an arbitrary $k \geq b$ Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

Problem 5 - Induction with Mod

Introduction:
Let $P(n)$ be " 4 n $\equiv 1(\bmod 3)$ ". We show $P(n)$ holds for all natural numbers n by induction on n. From the definition of mod equivalence, the statement is equivalent to $3 \mid 4^{n}-1$. By definition of divides, it suffices to show that $4^{n}=3 j+1$ for some integer j.

Base Case: Show P(b).
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$.
Conclusion: Therefore $\mathrm{P}(\mathrm{n})$ holds for all natural numbers n by induction.

Problem 5 - Induction with Mod

Introduction:
Let $P(n)$ be " 4 n $\equiv 1(\bmod 3)$ ". We show $P(n)$ holds for all natural numbers n by induction on n . From the definition of mod equivalence, the statement is equivalent to $3 \mid 4^{n}-1$. By definition of divides, it suffices to show that $4^{n}=3 j+1$ for some integer j.

Base Case: $(n=0) 4^{0}=1=0+1=3(0)+1$. Thus $P(0)$ holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$.
Conclusion: Therefore $\mathrm{P}(\mathrm{n})$ holds for all natural numbers n by induction.

Problem 5 - Induction with Mod

Introduction:
Let $P(n)$ be " 4 n $\equiv 1(\bmod 3)$ ". We show $P(n)$ holds for all natural numbers n by induction on n . From the definition of mod equivalence, the statement is equivalent to $3 \mid 4^{n}-1$. By definition of divides, it suffices to show that $4^{n}=3 j+1$ for some integer j.

Base Case: $(\mathrm{n}=0) 4^{0}=1=0+1=3(0)+1$. Thus $P(0)$ holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. That is, $4^{\mathrm{k}}=3 \mathrm{j}_{\mathrm{k}}+1$ with j_{k} an integer.

Inductive Step: Show $P(k+1)$.
Conclusion: Therefore $\mathrm{P}(\mathrm{n})$ holds for all natural numbers n by induction.

Problem 5 - Induction with Mod

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. That is, $4^{k}=$ $3 \mathrm{j}_{\mathrm{k}}+1$ with j_{k} an integer.

Inductive Step: Show $P(k+1)$. Goal: $4^{k+1}=3 j_{k+1}+1$ for some integer j_{k+1}. $4^{\mathrm{k}+1}=4\left(4^{\mathrm{k}}\right)$
$=4\left(3 \mathrm{j}_{\mathrm{k}}+1\right) \quad$ [Inductive Hypothesis]
$=4\left(3 j_{k}\right)+4$
$=4\left(3 j_{k}\right)+3+1$
$=3\left(4 \mathrm{j}_{\mathrm{k}}+1\right)+1$
$4 \mathrm{j}_{\mathrm{k}}+1$ is an integer since j_{k} is an integer. Our $\mathrm{j}_{\mathrm{k}+1}$ is $4 \mathrm{j}_{\mathrm{k}}+1$, so $\mathrm{P}(\mathrm{k}+1)$ holds. Conclusion: Therefore $\mathrm{P}(\mathrm{n})$ holds for all natural numbers n by induction.

Problem 5 - Induction with Mod

Inductive Step: Goal: Show $4^{j+1} \equiv 1(\bmod 3)$

$$
4^{j+1}=4^{j} * 4
$$

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

Problem 5 - Induction with Mod

Inductive Step: Goal: Show $4^{j+1} \equiv 1(\bmod 3)$

$$
\begin{aligned}
4^{j+1} & =4^{j} * 4 \\
& =(3 t+1) * 4 \text { for some integer } t \quad[B y I H]
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

Problem 5 - Induction with Mod

Inductive Step: Goal: Show $4^{j+1} \equiv 1(\bmod 3)$

$$
\begin{aligned}
4^{j+1} & =4^{j} * 4 \\
& =(3 t+1) * 4 \text { for some integer } t \quad[B y I H] \\
& =12 t+4 \\
& =3(4 t)+3+1
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

Problem 5 - Induction with Mod

Inductive Step: Goal: Show $4^{j+1} \equiv 1(\bmod 3)$

$$
\begin{aligned}
4^{j+1} & =4^{j} * 4 \\
& =(3 t+1) * 4 \text { for some integer } t \quad[B y I H] \\
& =12 t+4 \\
& =3(4 t)+3+1 \\
& =3(4 t+1)+1
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

Problem 5 - Induction with Mod

Inductive Step: Goal: Show $4^{j+1} \equiv 1(\bmod 3)$

$$
\begin{aligned}
4^{j+1} & =4^{j} * 4 \\
& =(3 t+1) * 4 \text { for some integer } t \quad[B y I H] \\
& =12 t+4 \\
& =3(4 t)+3+1 \\
& =3(4 t+1)+1
\end{aligned}
$$

Since t is an integer, $(4 t+1)$ is also an integer. Therefore, we have $3 k+1$ for some integer k. This demonstrates that $4^{j+1}=3 k+1$ holds, which shows $4^{j+1} \equiv 1(\bmod 3)$ for an arbitrary integer j by the definition of divides and modular equivalence.

Conclusion: Therefore, $P(n)$ holds for all integers $n \in N$ by the principle of induction.

That's All Folks!

Bonus Problem:

Problem 4 - Induction with Equality

a) Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
b) Define the triangle numbers as $\triangle_{n}=1+2+\cdots+n$, where $n \in \mathbb{N}$. In part (a) we showed $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}
$$

Now try part (b) with people around you, and then we'll go over it together!

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 4 - Induction with Equality

$\triangle_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$

Let $P(n)$ be "". We show $P(n)$ holds for (some) n by induction on n. Base Case: $P(b)$:
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 4 - Induction with Equality

$\Delta_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\Delta_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(b)$:
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 4 - Induction with Equality

$\Delta_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\Delta_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds. Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$. Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 4 - Induction with Equality

$\Delta_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^{3}+1^{3}+\cdots+k^{3}+=(0+1+\cdots+k)^{2}$ Inductive Step: Goal: Show $P(k+1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 4 - Induction with Equality

$\Delta_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^{3}+1^{3}+\cdots+k^{3}+=(0+1+\cdots+k)^{2}$ Inductive Step: Goal: Show $P(k+1): 0^{3}+1^{3}+\cdots+k^{3}+(k+1)^{3}=(0+1+\cdots+k+(k+1))^{2}$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N}
$$

Problem 4 - Induction with Equality

$\Delta_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^{3}+1^{3}+\cdots+k^{3}+=(0+1+\cdots+k)^{2}$ Inductive Step: Goal: Show $P(k+1): 0^{3}+1^{3}+\cdots+k^{3}+(k+1)^{3}=(0+1+\cdots+k+(k+1))^{2}$ $0^{3}+1^{3}+\cdots+k^{3}+(k+1)^{3}=\cdots$

$$
=(0+1+\cdots+k+(k+1))^{2}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

$$
\Delta_{n}=1+2+\cdots+n, n \in \mathbb{N} .
$$

Problem 4 - Induction with Equality

$\Delta_{n}=\frac{n(n+1)}{2}$. Prove for all $n \in \mathbb{N}$: $0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}$
Let $P(n)$ be " $0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}$ ". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.
Base Case: $P(0): 0^{3}=0=(0)^{2}$ so the base case holds.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^{3}+1^{3}+\cdots+k^{3}+=(0+1+\cdots+k)^{2}$ Inductive Step: Goal: Show $P(k+1): 0^{3}+1^{3}+\cdots+k^{3}+(k+1)^{3}=(0+1+\cdots+k+(k+1))^{2}$

$$
\begin{aligned}
0^{3}+1^{3}+\cdots+k^{3}+(k+ & 1)^{3}=(0+1+\cdots+k)^{2}+(k+1)^{3} & & \text { by I.H. } \\
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} & & \text { by (a) } \\
& =(k+1)^{2}\left(\frac{k^{2}}{2^{2}}+(k+1)\right) & & \text { factor out }(k+1)^{2} \\
& =(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right) & & \\
& =(k+1)^{2}\left(\frac{(k+2)^{2}}{4}\right) & & \text { factor numerator } \\
& =\left(\frac{(k+1)(k+2)}{2}\right)^{2} & & \text { by (a) }
\end{aligned}
$$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.

