Section 08: Induction, Regular Expressions, CFGs

1. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).
(b) Write a regular expression that matches all base-3 numbers that are divisible by 3 .
(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring " 000 ".
(d) Write a regular expression that matches all binary strings that do not have any consecutive 0's or 1's.
(e) Write a regular expression that matches all binary strings of the form $1^{k} y$, where $k \geq 1$ and $y \in\{0,1\}^{*}$ has at least k 1's.

2. CFGs

Write a context-free grammar to match each of these languages.
(a) All binary strings that start with 11.
(b) All binary strings that contain at most one 1.
(c) All strings over $0,1,2$ with the same number of 1 s and 0 s and exactly one 2 .

Hint: Try modifying the grammar from Section 82 c for binary strings with the same number of 1 s and 0 s (You may need to introduce new variables in the process).

3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.
(a) Binary strings of even length.
(b) Binary strings not containing 10 .
(c) Binary strings not containing 10 as a substring and having at least as many 1 s as 0 s .
(d) Binary strings containing at most two 0 s and at most two 1 s .

4. More CFGs

Write a context-free grammar to match each of these languages.
(a) All binary strings that end in 00 .
(b) All binary strings that contain at least three 1's.
(c) All binary strings with an equal number of 1's and 0's.
(d) All binary strings of the form $x y$, where $|x|=|y|$, but $x \neq y$.

5. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.
Basis Step Nil is a Tree.
Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\operatorname{Tree}(x, L, R)$ is a Tree.
The sum function returns the sum of all elements in a Tree.

$$
\begin{array}{ll}
\operatorname{sum}(\operatorname{Nil}) & =0 \\
\operatorname{sum}(\operatorname{Tree}(x, L, R)) & =x+\operatorname{sum}(L)+\operatorname{sum}(R)
\end{array}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{array}{ll}
\operatorname{reverse}(\operatorname{Nil}) & =\operatorname{Nil} \\
\operatorname{reverse}(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \operatorname{reverse}(R), \operatorname{reverse}(L))
\end{array}
$$

Show that, for all Trees T that

$$
\operatorname{sum}(T)=\operatorname{sum}(\operatorname{reverse}(T))
$$

