
Section 08: Solutions

1. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the sub-
string “000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

(d) Write a regular expression that matches all binary strings that do not have any consecutive 0’s or 1’s.

Solution:

((01)∗(0 ∪ ε)) ∪ ((10)∗(1 ∪ ε))

(e) Write a regular expression that matches all binary strings of the form 1ky, where k ≥ 1 and y ∈ {0, 1}∗ has at
least k 1’s.

Solution:

1(0 ∪ 1)∗1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s there are, it turns out that
we don’t. Convince yourself that strings in the language are exactly those of the form 1x, where x is any
binary string with at least one 1. Hence, x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)∗.

2. CFGs

Write a context-free grammar to match each of these languages.
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(a) All binary strings that start with 11.
Solution:

S → 11T

T → 1T | 0T | ε

(b) All binary strings that contain at most one 1.
Solution:

S → ABA

A → 0A | ε
B → 1 | ε

(c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.
Hint: Try modifying the grammar from Section 8 2c for binary strings with the same number of 1s and 0s
(You may need to introduce new variables in the process).
Solution:

S → 2T | T2 | ST | TS | 0S1 | 1S0

T → TT | 0T1 | 1T0 | ε

T is the grammar from Section 8 2c. It generates all binary strings with the same number of 1s and 0s.
S matches a 2 at the beginning or end. The rest of the string must then match T since it cannot have
another 2. If neither the first nor last character is a 2, then it falls into the usual cases of matching 0s and
1s, so we can mostly use the same rules as T. The main change is that SS becomes ST | TS to ensure that
exactly one of the two parts contains a 2. The other change is that there is no ε since a 2 must appear
somewhere.
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3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify
that your solution is correct.

(a) Binary strings of even length.

Solution:

Basis: ε ∈ S.
Recursive Step: If x ∈ S, then x00, x01, x10, x11 ∈ S.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

“Brief ” Justification: We will show that x ∈ S iff x has even length (i.e.,|x|= 2n for some n ∈ N). (Note:
“brief” is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose x ∈ S. If x is the empty string, then it has length 0, which is even. Otherwise, x is built up from
the empty string by repeated application of the recursive step, so it is of the form x1x2...xn, where each
xi ∈ {00, 01, 10, 11}. In that case, we can see that |x|=|x1|+|x2|+···+|xn|= 2n, which is even. Now,
suppose that x has even length. If it’s length is zero, then it is the empty string, which is in S. Otherwise,
it has length 2n for some n > 0, and we can write x in the form x1x2...xn, where each xi ∈ {00, 01, 10, 11}
has length 2. Hence, we can see that x can be built up from the empty string by applying the recursive
step with x1, then x2, and so on up to xn, which shows that x ∈ S.

(b) Binary strings not containing 10.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence, it
must be of the form 0m1n for some m,n ∈ N.

Basis: ε ∈ S.

Recursive Step: If x ∈ S, then 0x ∈ S and x1 ∈ S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a
1 since it only adds 0s on the left. Hence, every string in S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as y = 0m1n for
some m,n ∈ N. We can build up the string y from the empty string by applying the rule x → 0x m times
and then applying the rule x → x1 n times. This shows that the string y is in S.

(c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:

These must be of the form 0m1n for some m,n ∈ N with m ≤ n. We can ensure that by pairing up the 0s
with 1s as they are added:

Basis: ε ∈ S.
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Recursive Step: If x ∈ S, then 0x1 ∈ S and x1 ∈ S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0s at the front.
And since every 0 comes with a 1, we always have at least as many 1s as 0s.

In the other direction, from our discussion above, any string of this form can be written as xy, where
x = 0m1m and y = 1n−m, since n ≥ m. We can build up the string x from the empty string by applying
the rule x → 0x1 m times and then produce the string xy by applying the rule x → x1 n−m times, which
shows that the string is in S.

(d) Binary strings containing at most two 0s and at most two 1s.

Solution:

This is the set of all binary strings of length at most 4 except for these:

000, 1000, 0100, 0010, 0001, 0000, 111, 0111, 1011, 1101, 1110, 1111

Since this is a finite set, we can define it recursively using only basis elements and no recursive step.

4. More CFGs

Write a context-free grammar to match each of these languages.

(a) All binary strings that end in 00.
Solution:

S → 0S | 1S | 00

(b) All binary strings that contain at least three 1’s.
Solution:

S → TTT

T → 0T | T0 | 1T | 1

(c) All binary strings with an equal number of 1’s and 0’s.
Solution:

S → 0S1S | 1S0S | ε

and
S → SS | 0S1 | 1S0 | ε

both work. Note: The fact that all the strings generated have the property is easy to show (by induction)
but the fact that one can generate all strings with the property is trickier. To argue this that each of these
is grammars is enough one would need to consider how the difference between the # of 0’s seen and the
# of 1’s seen occurs in prefixes of any string with the property.
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(d) All binary strings of the form xy, where |x| = |y|, but x 6= y.

Solution:

S → AB | BA

A → 0 | 0A0 | 0A1 | 1A0 | 1A1

B → 1 | 0B0 | 0B1 | 1B0 | 1B1

Explanation: We will explain the forward direction (i.e. this grammar generates strings of the desired
form); in particular, we will examine strings generated by the rule AB, as the other rule follows similarly.
An arbitrary string generated by AB will look like a10a2b11b2, where a1, a2, b1, b2 ∈ {0, 1}∗, |a1| = |a2| = k1,
and |b1| = |b2| = k2 for some k1, k2 ∈ N. In particular, we can “repartition” the substring a2b1 into a′2b

′
1

s.t. |a′2| = k2 and |b′1| = k1. Letting x = a10a
′
2 and y = b′11b2, observe that |x| = |y| = k1 + k2 + 1 and x

and y differ at the (k1 + 1)-th character.
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5. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree(x, L,R) is a Tree.

The sum function returns the sum of all elements in a Tree.

sum(Nil) = 0

sum(Tree(x, L,R)) = x+ sum(L) + sum(R)

The following recursively defined function produces the mirror image of a Tree.

reverse(Nil) = Nil

reverse(Tree(x, L,R)) = Tree(x, reverse(R), reverse(L))

Show that, for all Trees T that
sum(T ) = sum(reverse(T ))

Solution:

For a Tree T , let P (T ) be “sum(T ) = sum(reverse(T ))”. We show P (T ) for all Trees T by structural induction.

Base Case: By definition we have reverse(Nil) = Nil. Applying sum to both sides we get sum(Nil) =
sum(reverse(Nil)), which is exactly P (Nil), so the base case holds.

Inductive Hypothesis: Suppose P (L) and P (R) hold for some arbitrary Trees L and R.

Inductive Step: Let x be an arbitrary integer. Goal: Show P (Tree(x, L,R)) holds.

We have,

sum(reverse(Tree(x, L,R))) = sum(Tree(x, reverse(R), reverse(L))) [Definition of reverse]

= x+ sum(reverse(R)) + sum(reverse(L)) [Definition of sum]

= x+ sum(R) + sum(L) [Inductive Hypothesis]

= x+ sum(L) + sum(R) [Commutativity]

= sum(Tree(x, L,R)) [Definition of sum]

This shows P (Tree(x, L,R)).

Conclusion: Therefore, P (T ) holds for all Trees T by structural induction.
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