Section 09: Solutions

1. CFGs

Write a context-free grammar to match each of these languages.
(a) All binary strings that start with 11.

Solution:

$$
\begin{aligned}
& \mathbf{S} \rightarrow 11 \mathbf{T} \\
& \mathbf{T} \rightarrow 1 \mathbf{T}|0 \mathbf{T}| \varepsilon
\end{aligned}
$$

(b) All binary strings that contain at most one 1.

Solution:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{A B A} \\
& \mathbf{A} \rightarrow 0 \mathbf{A} \mid \varepsilon \\
& \mathbf{B} \rightarrow 1 \mid \varepsilon
\end{aligned}
$$

(c) All strings over $0,1,2$ with the same number of 1 s and 0 s and exactly one 2 .

Hint: Try modifying the grammar from Section 82 c for binary strings with the same number of 1 s and 0 s (You may need to introduce new variables in the process).

Solution:

$$
\begin{aligned}
& \mathbf{S} \rightarrow 2 \mathbf{T}|\mathbf{T} 2| \mathbf{S T}|\mathbf{T S}| 0 \mathbf{S} 1 \mid 1 \mathbf{S} 0 \\
& \mathbf{T} \rightarrow \mathbf{T T}|0 \mathbf{T} 1| 1 \mathbf{T} 0 \mid \varepsilon
\end{aligned}
$$

T is the grammar from Section 8 2c. It generates all binary strings with the same number of 1 s and 0 s . \mathbf{S} matches a 2 at the beginning or end. The rest of the string must then match \mathbf{T} since it cannot have another 2. If neither the first nor last character is a 2 , then it falls into the usual cases of matching 0 s and 1 s , so we can mostly use the same rules as \mathbf{T}. The main change is that $\mathbf{S S}$ becomes $\boldsymbol{S T} \mid \mathbf{T S}$ to ensure that exactly one of the two parts contains a 2 . The other change is that there is no ϵ since a 2 must appear somewhere.

2. DFAs, Stage 1

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1,2,3\}$.
(a) All binary strings.

Solution:

q_{0} : binary strings
$q_{1}:$ strings that contain a character which is not 0 or 1 .
(b) All strings whose digits sum to an even number.

Solution:

(c) All strings whose digits sum to an odd number.

Solution:

3. DFAs, Stage 2

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1\}$.
(a) All strings which do not contain the substring 101.

Solution:

$q_{3}:$ string that contain 101.
q_{2} : strings that don't contain 101 and end in 10.
q_{1} : strings that don't contain 101 and end in 1.
$q_{0}: \varepsilon, 0$, strings that don't contain 101 and end in 00 .
(b) All strings containing at least two 0's and at most one 1 .

Solution:

(c) All strings containing an even number of 1's and an odd number of 0 's and not containing the substring 10 . Solution:

4. NFAs

(a) What language does the following NFA accept?

Solution:

All strings of only 0 's and 1's not containing more than one 1.
(b) Create an NFA for the language "all binary strings that have a 1 as one of the last three digits".

Solution:

The following is one such NFA:

5. DFAs \& Minimization

Note: We will not test you on minimization, although you may optionally read the extra slides and do this problem for fun
(a) Convert the NFA from 1a to a DFA, then minimize it.

Solution:

Here is the minimized form:

(b) Minimize the following DFA:

Solution:

Step 1: q_{0}, q_{2} are final states and the rest are not final. So, we start with the initial partition with the following groups: group 1 is $\left\{q_{0}, q_{2}\right\}$ and group 2 is $\left\{q_{1}, q_{3}, q_{4}\right\}$.
Step 2: q_{1} is sending a to group 1 while q_{3}, q_{4} are sending a to group 2. So, we divide group 2 . We get the following groups: group 1 is $\left\{q_{0}, q_{2}\right\}$, group 3 is $\left\{q_{1}\right\}$ and group 4 is $\left\{q_{3}, q_{4}\right\}$.
Step 3: q_{0} is sending a to group 3 and q_{2} is sending a to group 4. So, we divide group 1 . We will have the following groups: group 3 is $\left\{q_{1}\right\}$, group 4 is $\left\{q_{3}, q_{4}\right\}$, group 5 is $\left\{q_{0}\right\}$ and group 6 is $\left\{q_{2}\right\}$.

The minimized DFA is the following:

6. Onto \& One-to-One

Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is onto but not one-to-one. Be specific.

Solution:

Let $f(n)=\left\lfloor\frac{n}{2}\right\rfloor$. Then f is onto. But f isn't one-to-one because (for example) both 0 and 1 are mapped onto 0 .

7. Proving Onto

(a) Suppose that $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ is defined by $f(x, y)=x y+y x^{2}-x^{2}$. Prove that f is onto, where $\mathbb{Z}^{2}=\mathbb{Z} \mathbf{x} \mathbb{Z}$ which represents all possible ordered pairs of integers.
Solution:
Notice that $f(x, y)=x y+(y-1) x^{2}$.
Let p be an arbitrary integer. We need to find a pre-image (the pre-image of a value is the set of all input values (or elements) that map to that particular value under the function) for p.

Consider $m=(p, 1) . m$ is an element of $\mathbb{Z} \mathbf{x} \mathbb{Z}=\mathbb{Z}^{2}$. We can compute

$$
f(m)=p \cdot 1+(1-1) p^{2}=p+0 \cdot p^{2}=p
$$

So m is a pre-image of p.

Since p was arbitrary and we found a pre-image for an arbitrarily chosen integer, f is onto.
(b) Suppose that A and B are sets. Suppose that $f: B \rightarrow A$ and $g: A \rightarrow B$ are functions such that $f(g(x))=x$ for every $x \in A$. Prove that f is onto. Solution:

Let m be an arbitrary element of A. We need to find a pre-image for m.

Consider $n=g(m) . n$ is an element of B. Furthermore, since $f(g(x))=x$ for every $x \in A$, we have

$$
f(n)=f(g(m))=m
$$

So n is a pre-image of m.

Since m was arbitrary and we found a pre-image for an arbitrarily chosen element of A, f is onto.

