
CSE 311 Section 10

Final Review

Administrivia

Announcements & Reminders
● HW7 Regrade Requests

○ Submit a regrade request if something was graded incorrectly

● HW8
○ Part 1: due Yesterday, late submission Saturday (3/9)
○ Part 2: due Tomorrow, late submission Saturday (3/9)
○ Congratulations on finishing your last 311 assignment!

● Final Review Session
○ Saturday 3/9 @ 1:00-3:00pm @CSE2 G20

● Final Exam
○ Monday 3/11 @ 2:30pm-4:20 @ MGH 389
○ Fill out Form for Conflict Exam (also desk form)
○ See Ed Post for Content details!

● Course Evaluations are out!
○ Please consider taking 10 minutes to complete both section and course evaluations!

Irregularity

A note for your final…
You WILL have a question on the final exam where you will
have a choice between either proving a language is
irregular OR proving a set is uncountable.

For section today, we will go over how to prove a language is
irregular. There is also a problem in the handout on proving a
set is uncountable you can review if you prefer to prepare for
that question. You should pick whichever you think is easier
for you, and make sure you are prepared to do it on the final
exam!

Irregularity Template
Claim: L is an irregular language.

Proof: Suppose, for the sake of contradiction, that L is regular. Then there is a DFA 𝑀 such
that 𝑀 accepts exactly L.

Let 𝑆 = [TODO] (𝑆 is an infinite set of strings)
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. [TODO] (We don’t get to choose 𝑥, 𝑦, but we can describe them
based on that set 𝑆 we just defined)

Consider the string 𝑧 = [TODO] (We do get to choose 𝑧 depending on 𝑥, 𝑦)

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO], so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO], so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

Irregularity Example from Lecture
Claim: {0𝑘1𝑘 : 𝑘 ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0𝑘1𝑘 : 𝑘 ≥ 0} is regular. Then there is a
DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0𝑘 : 𝑘 ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for
some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 1a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎1𝑎 , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b1𝑎 , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only
one of an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

Problem 1 – Irregularity
a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Work on this problem with the people around you.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there
is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there
is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there
is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b
for some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there
is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b
for some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 0a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there
is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b
for some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 0a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎1𝑎0𝑎 , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b1b0𝑎 , so 𝑦𝑧 ∉ L. Since 𝑞 is can be
only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then
there is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not
regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then
there is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. [TODO]

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not
regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then
there is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for
some integer 𝑏 ≥ 0, with 𝑎 > 𝑏.

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not
regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then
there is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for
some integer 𝑏 ≥ 0, with 𝑎 > 𝑏.

Consider the string 𝑧 = (12)a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not
regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then
there is a DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for
some integer 𝑏 ≥ 0, with 𝑎 > 𝑏.

Consider the string 𝑧 = (12)a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎(12)a , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b(12)a , so 𝑦𝑧 ∉ L. Since 𝑞 is can
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a
contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not
regular.

Final Review

■ Translations
■ Set Theory
■ Structural Induction
■ Weak Induction
■ Languages

Problem 5 – Review: Translations
Translate the following sentences into logical notation if the English statement is given or to an
English statement if the logical statement is given, taking into account the domain restriction. Let
the domain of discourse be students and courses. Use predicates Student, Course, CseCourse to
do the domain restriction. You can use Taking(x, y) which is true if and only if x is taking y. You can
also use RobbieTeaches(x) if and only if Robbie teaches x and ContainsTheory(x) if and only if x
contains theory.

(a) Every student is taking some course.

(b) There is a student that is not taking every cse course.

(c) Some student has taken only one cse course.

(d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

(e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧
RobbieTeaches(y)) → x = y)

Work on this problem with the people around you.

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧
RobbieTeaches(y)) → x = y)

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧
RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧
RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧
RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧
RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Every course taught by Robbie contains theory.

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧
RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Every course taught by Robbie contains theory.

There is only one cse course that Robbie teaches and that course contains theory.

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Work on this problem with the people around you.

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Problem 6 – Review: Set Theory

Problem 7 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of
elements that f sends C to. In other words, f(C) = {f(c) : c ∈ C}.

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Work on this problem with the people around you.

Problem 7 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of
elements that f sends C to. In other words, f(C) = {f(c) : c ∈ C}.

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Problem 7 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of
elements that f sends C to. In other words, f(C) = {f(c) : c ∈ C}.

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Let y ∈ f(A ∩ B) be arbitrary.

Then there exists some element x ∈ A ∩ B such that f(x) = y.
Then by the definition of intersection, x ∈ A and x ∈ B. Then f(x) ∈ f(A) and
f(x) ∈ f(B). Thus y ∈ f(A) and y ∈ f(B).

By definition of intersection, y ∈ f(A) ∩ f(B).

Since y was arbitrary, f(A ∩ B) ⊆ f(A) ∩ f(B).

Problem 8 – Review: Induction
a) A Husky Tree is a tree built by the following definition:

Basis: A single gold node is a Husky Tree.
Recursive Rules:
1. Let T1, T2 be two Husky Trees, both with root nodes colored gold. Make a new
purple root node and attach the roots of T1, T2 to the new node to make a new Husky
Tree.
2. Let T1, T2 be two Husky Trees, both with root nodes colored purple. Make a new
purple root node and attach the roots of T1, T2 to the new node to make a new Husky
Tree.
3. Let T1, T2 be two Husky Trees, one with a purple root, the other with a gold root.
Make a new gold root node, and attach the roots of T1, T2 to the new node to make a
new Husky Tree.

Use structural induction to show that for every Husky Tree: if it has a purple root, then it
has an even number of leaves and if it has a gold root, then it has an odd number of
leaves. Work on this problem with the people around you.

Problem 8 – Review: Induction
Let 𝑃(𝑥) be. We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Case: Show 𝑃(𝑥)
[Do that for every base cases 𝑥 in 𝑆.]
Let 𝑦 be an arbitrary element of 𝑆 not covered by the base cases. By the exclusion rule, 𝑦 =
<recursive rules>

Inductive Hypothesis: Suppose 𝑃(𝑥)
[Do that for every 𝑥 listed as in 𝑆 in the recursive rules.]

Inductive Step: Show 𝑃() holds for 𝑦.
[You will need a separate case/step for every recursive rule.]

Therefore 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by the principle of induction.

Problem 8 – Review: Induction
Let P(T) be “if T has a purple root, then it has an even number of leaves and if T has a gold
root, then it has an odd number of leaves.”

We show P(T) holds for all Husky Trees T by structural induction.

Base Case: Let T be a Husky Tree made from the basis step. By the definition of Husky
Tree, T must be a single gold node. That node is also a leaf node (since it has no children)
so there are an odd number (specifically, 1) of leaves, as required for a gold root node.

Inductive Hypothesis: Let T1, T2 be arbitrary Husky Trees, and suppose P(T1) and P(T2).

Problem 8 – Review: Induction
Inductive Step: We will have separate cases for each possible rule.
Rule 1: Suppose T1 and T2 both have gold roots. By the recursive rule, T has a purple root. By inductive
hypothesis on T1, since T1’s root is gold, it has an odd number of leaves. Similarly by IH, T2 has an odd
number of leaves. T’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T is the
sum of two odd numbers, which is even. Thus T has an even number of leaves, as is required for a purple
root. Thus P(T) holds.
Rule 2: Suppose T1 and T2 both have purple roots. By the recursive rule, T has a purple root. By inductive
hypothesis on T1, since T1’s root is purple, it has an even number of leaves. Similarly by IH, T2 has an even
number of leaves. T’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T is the
sum of two even numbers, which is even. Thus T has an even number of leaves, as is required for a purple
root. Thus P(T) holds.
Rule 3: Suppose T1 and T2 have opposite colored roots. Let T1 be the one with a gold root, and T2 the one
with the purple root. By the recursive rule, T has a gold root. By inductive hypothesis on T1, since T1’s root is
gold, it has an odd number of leaves. Similarly, by IH, T2 has an even number of leaves since it has a purple
root. T’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T is the sum of an odd
number and an even number, which is odd. Thus T has an odd number of leaves, as is required
for a gold root. Thus P(T) holds.

By the principle of induction, we have that for every Husky Tree, T: P(T) holds.

Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) =

n(2n − 1)

Work on this problem with the people around you.

Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) =

n(2n − 1)

Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) =

n(2n − 1)

Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) =

n(2n − 1)

Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) =

n(2n − 1)

i.e. 1 + 5 + 9 + · · · + (4k − 3) = k(2k −
1)

Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) =

n(2n − 1)

i.e. 1 + 5 + 9 + · · · + (4k − 3) = k(2k −
1)

Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) =

n(2n − 1)

i.e. 1 + 5 + 9 + · · · + (4k − 3) = k(2k −
1)

Problem 9 – Review: Languages
(a) Construct a regular expression that represents binary strings where no

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(c) Construct a DFA that recognizes the language of all binary strings which,
when interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in
base-10, so should be accepted while 111 is 7 in base-10, so should be
rejected. The first bit processed will be the most-significant bit.
Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 1? It’s a lot like a shift operation...

(d) Construct a DFA that recognizes the language of all binary strings with an
even number of 0’s and each 0 is (immediately) followed by at least one 1.

Work on this problem with the people around you.

Problem 9 – Review: Languages
(a) Construct a regular expression that represents binary strings where no

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

Problem 9 – Review: Languages
(a) Construct a regular expression that represents binary strings where no

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(0∗ (10)∗) ∗ 1 ∗

Problem 9 – Review: Languages
(a) Construct a regular expression that represents binary strings where no

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(0∗ (10)∗) ∗ 1 ∗

S → 1S4 | T
T → 2T3 | ε

Problem 9 – Review: Languages
(c) Construct a DFA that recognizes the language of all binary strings which,

when interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in
base-10, so should be accepted while 111 is 7 in base-10, so should be
rejected. The first bit processed will be the most-significant bit.

Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 1? It’s a lot like a shift operation...

Problem 9 – Review: Languages
(c) Construct a DFA that recognizes the language of all binary strings which,

when interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in
base-10, so should be accepted while 111 is 7 in base-10, so should be
rejected. The first bit processed will be the most-significant bit.

Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 1? It’s a lot like a shift operation...

Problem 9 – Review: Languages
(d) Construct a DFA that recognizes the language of all binary strings with an

even number of 0’s and each 0 is (immediately) followed by at least one 1.

Problem 9 – Review: Languages
(d) Construct a DFA that recognizes the language of all binary strings with an

even number of 0’s and each 0 is (immediately) followed by at least one 1.

q0: even number of 0’s, with final 0
followed by at least one 1

q1: odd number of 0’s, with final 0 not
yet followed by at least one 1

q2: odd number of 0’s, with final 0
followed by at least one 1

q3: even number of 0’s, with final 0 not
yet followed by at least one 1

q4: garbage state where at least one 0
is not followed by at least one 1

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

