
CSE 311 Section 10

Final Review



Administrivia



Announcements & Reminders
● HW7 Regrade Requests

○ Submit a regrade request if something was graded incorrectly

● HW8
○ Part 1: due Yesterday, late submission Saturday (3/9)
○ Part 2: due Tomorrow, late submission Saturday (3/9)
○ Congratulations on finishing your last 311 assignment!

● Final Review Session 
○ Saturday 3/9 @ 1:00-3:00pm @CSE2 G20

● Final Exam
○ Monday 3/11 @ 2:30pm-4:20 @ MGH 389
○ Fill out Form for Conflict Exam (also desk form)
○ See Ed Post for Content details! 

● Course Evaluations are out!
○ Please consider taking 10 minutes to complete both section and course evaluations! 



Irregularity



A note for your final…
You WILL have a question on the final exam where you will 
have a choice between either proving a language is 
irregular OR proving a set is uncountable.

For section today, we will go over how to prove a language is 
irregular. There is also a problem in the handout on proving a 
set is uncountable you can review if you prefer to prepare for 
that question. You should pick whichever you think is easier 
for you, and make sure you are prepared to do it on the final 
exam!



Irregularity Template
Claim: L is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L is regular. Then there is a DFA 𝑀 such 
that 𝑀 accepts exactly L. 

Let 𝑆 = [TODO] (𝑆 is an infinite set of strings)
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO] (We don’t get to choose 𝑥, 𝑦, but we can describe them 
based on that set 𝑆 we just defined) 

Consider the string 𝑧 = [TODO] (We do get to choose 𝑧 depending on 𝑥, 𝑦)

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO], so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO], so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.



Irregularity Example from Lecture
Claim: {0𝑘1𝑘 : 𝑘 ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0𝑘1𝑘 : 𝑘 ≥ 0} is regular. Then there is a 
DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0𝑘 : 𝑘 ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for 
some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 1a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎1𝑎 , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b1𝑎 , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only 
one of an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction! 

Therefore, L is an irregular language.



Problem 1 – Irregularity
a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Work on this problem with the people around you.
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is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .
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Therefore, L is an irregular language.
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Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there 
is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n1n : n ≥ 0}
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Claim: {0n1n0n : n ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there 
is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b 
for some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 0a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
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Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there 
is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b 
for some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 0a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎1𝑎0𝑎 , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b1b0𝑎 , so 𝑦𝑧 ∉ L. Since 𝑞 is can be 
only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction! 

Therefore, L is an irregular language.

(a)   Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.



Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then 
there is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(b)   Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not 
regular.
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Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO]

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(b)   Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not 
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Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then 
there is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for 
some integer 𝑏 ≥ 0, with 𝑎 > 𝑏.
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Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
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Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then 
there is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for 
some integer 𝑏 ≥ 0, with 𝑎 > 𝑏.

Consider the string 𝑧 = (12)a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎(12)a , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b(12)a , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
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contradiction! 

Therefore, L is an irregular language.

(b)   Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not 
regular.



Final Review

■ Translations
■ Set Theory
■ Structural Induction 
■ Weak Induction 
■ Languages



Problem 5 – Review: Translations
Translate the following sentences into logical notation if the English statement is given or to an 
English statement if the logical statement is given, taking into account the domain restriction. Let 
the domain of discourse be students and courses. Use predicates Student, Course, CseCourse to 
do the domain restriction. You can use Taking(x, y) which is true if and only if x is taking y. You can 
also use RobbieTeaches(x) if and only if Robbie teaches x and ContainsTheory(x) if and only if x 
contains theory.

(a) Every student is taking some course.

(b) There is a student that is not taking every cse course.

(c) Some student has taken only one cse course.

(d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)] 

(e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ 
RobbieTeaches(y)) → x = y)

Work on this problem with the people around you.
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Every course taught by Robbie contains theory.



Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ 
RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)]) 

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))] 

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Every course taught by Robbie contains theory.

There is only one cse course that Robbie teaches and that course contains theory. 
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Work on this problem with the people around you.
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Problem 7 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of 
elements that f sends C to. In other words, f(C) = {f(c) : c ∈ C}. 

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Work on this problem with the people around you.
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Problem 7 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of 
elements that f sends C to. In other words, f(C) = {f(c) : c ∈ C}. 

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Let y ∈ f(A ∩ B) be arbitrary. 

Then there exists some element x ∈ A ∩ B such that f(x) = y. 
Then by the definition of intersection, x ∈ A and x ∈ B. Then f(x) ∈ f(A) and 
f(x) ∈ f(B). Thus y ∈ f(A) and y ∈ f(B). 

By definition of intersection, y ∈ f(A) ∩ f(B). 

Since y was arbitrary, f(A ∩ B) ⊆ f(A) ∩ f(B).



Problem 8 – Review: Induction
a) A Husky Tree is a tree built by the following definition: 

Basis: A single gold node is a Husky Tree. 
Recursive Rules: 
1. Let T1, T2 be two Husky Trees, both with root nodes colored gold. Make a new 
purple root node and attach the roots of T1, T2 to the new node to make a new Husky 
Tree. 
2. Let T1, T2 be two Husky Trees, both with root nodes colored purple. Make a new 
purple root node and attach the roots of T1, T2 to the new node to make a new Husky 
Tree. 
3. Let T1, T2 be two Husky Trees, one with a purple root, the other with a gold root. 
Make a new gold root node, and attach the roots of T1, T2 to the new node to make a 
new Husky Tree. 

Use structural induction to show that for every Husky Tree: if it has a purple root, then it 
has an even number of leaves and if it has a gold root, then it has an odd number of 
leaves. Work on this problem with the people around you.



Problem 8 – Review: Induction
Let 𝑃(𝑥) be. We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Case: Show 𝑃(𝑥) 
[Do that for every base cases 𝑥 in 𝑆.]
Let 𝑦 be an arbitrary element of 𝑆 not covered by the base cases. By the exclusion rule, 𝑦 = 
<recursive rules>

Inductive Hypothesis: Suppose 𝑃(𝑥)
[Do that for every 𝑥 listed as in 𝑆 in the recursive rules.]

Inductive Step: Show 𝑃() holds for 𝑦.
[You will need a separate case/step for every recursive rule.]

Therefore 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by the principle of induction.



Problem 8 – Review: Induction
Let P(T) be “if T has a purple root, then it has an even number of leaves and if T has a gold 
root, then it has an odd number of leaves.”

We show P(T) holds for all Husky Trees T by structural induction.

Base Case: Let T be a Husky Tree made from the basis step. By the definition of Husky 
Tree, T must be a single gold node. That node is also a leaf node (since it has no children) 
so there are an odd number (specifically, 1) of leaves, as required for a gold root node.

Inductive Hypothesis: Let T1, T2 be arbitrary Husky Trees, and suppose P(T1) and P(T2). 



Problem 8 – Review: Induction
Inductive Step: We will have separate cases for each possible rule.
Rule 1: Suppose T1 and T2 both have gold roots. By the recursive rule, T has a purple root. By inductive 
hypothesis on T1, since T1’s root is gold, it has an odd number of leaves. Similarly by IH, T2 has an odd 
number of leaves. T’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T is the 
sum of two odd numbers, which is even. Thus T has an even number of leaves, as is required for a purple 
root. Thus P(T) holds.
Rule 2: Suppose T1 and T2 both have purple roots. By the recursive rule, T has a purple root. By inductive 
hypothesis on T1, since T1’s root is purple, it has an even number of leaves. Similarly by IH, T2 has an even 
number of leaves. T’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T is the 
sum of two even numbers, which is even. Thus T has an even number of leaves, as is required for a purple 
root. Thus P(T) holds.
Rule 3: Suppose T1 and T2 have opposite colored roots. Let T1 be the one with a gold root, and T2 the one 
with the purple root. By the recursive rule, T has a gold root. By inductive hypothesis on T1, since T1’s root is 
gold, it has an odd number of leaves. Similarly, by IH, T2 has an even number of leaves since it has a purple 
root. T’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T is the sum of an odd 
number and an even number, which is odd. Thus T has an odd number of leaves, as is required
for a gold root. Thus P(T) holds.

By the principle of induction, we have that for every Husky Tree, T: P(T) holds.



Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = 

n(2n − 1) 

Work on this problem with the people around you.
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Problem 8 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = 

n(2n − 1)  

i.e. 1 + 5 + 9 + · · · + (4k − 3) = k(2k − 
1)



Problem 9 – Review: Languages
(a) Construct a regular expression that represents binary strings where no 

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(c)  Construct a DFA that recognizes the language of all binary strings which, 
when interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in 
base-10, so should be accepted while 111 is 7 in base-10, so should be 
rejected. The first bit processed will be the most-significant bit. 
Hint: you need to keep track of the remainder %3. What happens to a binary 
number when you add a 0 at the end? A 1? It’s a lot like a shift operation... 

(d) Construct a DFA that recognizes the language of all binary strings with an 
even number of 0’s and each 0 is (immediately) followed by at least one 1.

Work on this problem with the people around you.



Problem 9 – Review: Languages
(a) Construct a regular expression that represents binary strings where no 

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}



Problem 9 – Review: Languages
(a) Construct a regular expression that represents binary strings where no 

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(0∗ (10)∗ ) ∗ 1 ∗ 



Problem 9 – Review: Languages
(a) Construct a regular expression that represents binary strings where no 

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(0∗ (10)∗ ) ∗ 1 ∗ 

S  →  1S4  |  T 
T  →  2T3  |  ε 
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Problem 9 – Review: Languages
(d) Construct a DFA that recognizes the language of all binary strings with an 

even number of 0’s and each 0 is (immediately) followed by at least one 1.

q0: even number of 0’s, with final 0 
followed by at least one 1 

q1: odd number of 0’s, with final 0 not 
yet followed by at least one 1 

q2: odd number of 0’s, with final 0 
followed by at least one 1 

q3: even number of 0’s, with final 0 not 
yet followed by at least one 1 

q4: garbage state where at least one 0 
is not followed by at least one 1



That’s All, Folks!

Thanks for coming to section this week!
Any questions?


