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Two Envelopes Revisited

• The “two envelopes” problem set-up

 Two envelopes: one contains $X, other contains $2X

 You select an envelope and open it

o Let Y = $ in envelope you selected

o Let Z = $ in other envelope

 Before opening envelope, think either equally good

o So, what happened by opening envelope?

 E[Z | Y] above assumes all values X (where 0 < X < ) 

are equally likely

o Note: there are infinitely many values of X

o So, not true probability distribution over X (doesn’t integrate to 1)
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Subjectivity of Probability

• Belief about contents of envelopes

 Since implied distribution over X is not a true probability 

distribution, what is our distribution over X?

o Frequentist: play game infinitely many times and see how often 

different values come up.

o Problem: I only allow you to play the game once

 Bayesian probability

o Have prior belief of distribution for X (or anything for that matter)

o Prior belief is a subjective probability

• By extension, all probabilities are subjective

o Allows us to answer question when we have no/limited data

• E.g., probability a coin you’ve never flipped lands on heads

o As we get more data, prior belief is “swamped” by data

The Envelope, Please

• Bayesian: have prior distribution over X, P(X)

 Let Y = $ in envelope you selected

 Let Z = $ in other envelope

 Open your envelope to determine Y

 If Y > E[Z | Y], keep your envelope, otherwise switch

o No inconsistency!

 Opening envelop provides data to compute P(X | Y) 

and thereby compute E[Z | Y]

 Of course, there’s the issue of how you determined 

your prior distribution over X…

o Bayesian: Doesn’t matter how you determined prior, but you 

must have one (whatever it is)

Revisting Bayes Theorem

• Bayes Theorem ( = model parameters, D = data):

 Likelihood: you’ve seen this before (in context of MLE)

o Probability of data given probability model (parameter )

 Prior: before seeing any data, what is belief about model

o I.e., what is distribution over parameters 

 Posterior: after seeing data, what is belief about model

o After data D observed, have posterior distribution p( | D) over 

parameters  conditioned on data.  Use this to predict new data.

o Here, we assume prior and posterior distribution have same 

parametric form (we call them “conjugate”)

P(D | ) P()

P(D)
P( | D) =

“Prior”“Likelihood”“Posterior”

Computing P(θ | D)

• Bayes Theorem ( = model parameters, D = data):

• We have prior P() and can compute P(D | )

• But how do we calculate P(D)?

• Complicated answer: 

• Easy answer: It is does not depend on , so ignore it

• Just a constant that forces P( | D) to integrate to 1

P(D | ) P()

P(D)
P( | D) =

  dPDPDP  )()|()(

P(θ | D) for Beta and Bernoulli

 Prior:  ~ Beta(a, b);  D = {n heads, m tails}

 By definition, this is Beta(a + n, b + m)

 All constant factors combine into a single constant

 Could just ignore constant factors along the way
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Where’d Ya Get Them P()?

  is the probability a coin turns up heads

 Model  with 2 different priors:

 P
1
() is Beta(3,8) (blue)

 P
2
() is Beta(7,4) (red)

 They look pretty different!

 Now flip 100 coins; get 58 heads and 42 tails

 What do posteriors look like?

It’s Like Having Twins

 As long as we collect enough data, posteriors will 
converge to the correct value!

From MLE to Maximum A Posteriori

• Recall Maximum Likelihood Estimator (MLE) of 

• Maximum A Posteriori (MAP) estimator of  :

where g() is prior distribution of .

 As before, can often be more convenient to use log:

 MAP estimate is the mode of the posterior distribution
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Conjugate Distributions Without Tears

• Just for review…

• Have coin with unknown probability  of heads

 Our prior (subjective) belief is that  ~ Beta(a, b)

 Now flip coin k = n + m times, getting n heads, m tails

 Posterior density: ( | n heads, m tails)~ Beta(a+n,b+\m)

o Beta is conjugate for Bernoulli, Binomial, Geometric, and 

Negative Binomial

 a and b are called “hyperparameters”

o Saw (a + b – 2) imaginary trials, of those (a – 1) are “successes”

 For a coin you never flipped before, use Beta(x, x) to 

denote you think coin likely to be fair

o How strongly you feel coin is fair is a function of x

Mo’ Beta Multinomial is Multiple Times the Fun

• Dirichlet(a1, a2, ..., am) distribution

 Conjugate for Multinomial

o Dirichlet generalizes Beta in same way Multinomial generalizes 

Bernoulli/Binomial

 Intuitive understanding of hyperparameters:

o Saw             imaginary trials, with (ai – 1) of outcome i

 Updating to get the posterior distribution

o After observing n1 + n2 + ... + nm, new trials with ni of outcome i...

o ... posterior distribution is Dirichlet(a1+ n1, a2 + n2, ..., am + nm)
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Best Short Film in the Dirichlet Category

• And now a cool animation of Dirichlet(a, a, a)

 This is actually log density (but you get the idea…)

Thanks 

Wikipedia!

Getting Back to your Happy Laplace

• Recall example of 6-sides die rolls:

 X ~ Multinomial(p1, p2, p3, p4, p5, p6)

 Roll n = 12 times

 Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

o MLE: p1=3/12, p2=2/12, p3=0/12, p4=3/12, p5=1/12, p6=3/12

 Dirichlet prior allows us to pretend we saw each 

outcome k times before.  MAP estimate:

o Laplace’s “law of succession”: idea above with k = 1

o Laplace estimate:

o Laplace: p1=4/18, p2=3/18, p3=1/18, p4=4/18, p5=2/18, p6=4/18

o No longer have 0 probability of rolling a three!

mkn

kX
p i

i





mn

X
p i

i





1

Good Times With Gamma

• Gamma(a, l) distribution

 Conjugate for Poisson

o Also conjugate for Exponential, but we won’t delve into that

 Intuitive understanding of hyperparameters:

o Saw a total imaginary events during l prior time periods

 Updating to get the posterior distribution

o After observing n events during next k time periods...

o ... posterior distribution is Gamma(a + n, l + k)

o Example: Gamma(10, 5) 

o Saw 10 events in 5 time periods.  Like observing at rate = 2

o Now see 11 events in next 2 time periods  Gamma(21, 7)

o Equivalent to updated rate = 3

It’s Normal to Be Normal

• Normal(m0, s0
2) distribution

 Conjugate for Normal (with unknown m, known s2)

 Intuitive understanding of hyperparameters:

o A priori, believe true m distributed ~ N(m0, s0
2) 

 Updating to get the posterior distribution

o After observing n data points...

o ... posterior distribution is:
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http://upload.wikimedia.org/wikipedia/en/5/54/LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif

