Two Envelopes Revisited

- The "two envelopes" problem set-up
- Two envelopes: one contains \$X, other contains \$2X
- You select an envelope and open it
- Let $Y=\$$ in envelope you selected
- Let $\mathrm{Z}=\$$ in other envelope
$E[Z \mid Y]=\frac{1}{2} \cdot \frac{Y}{2}+\frac{1}{2} \cdot 2 Y=\frac{5}{4} Y$
- Before opening envelope, think either equally good
- So, what happened by opening envelope?
- $\mathrm{E}[\mathrm{Z} \mid \mathrm{Y}]$ above assumes all values X (where $0<X<\infty$) are equally likely
- Note: there are infinitely many values of X
- So, not true probability distribution over X (doesn't integrate to 1)

The Envelope, Please

- Bayesian: have prior distribution over $\mathrm{X}, \mathrm{P}(\mathrm{X})$
- Let $\mathrm{Y}=\$$ in envelope you selected
- Let $Z=\$$ in other envelope
- Open your envelope to determine Y
- If $Y>E[Z \mid Y]$, keep your envelope, otherwise switch - No inconsistency!
- Opening envelop provides data to compute $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$ and thereby compute $E[Z \mid Y]$
- Of course, there's the issue of how you determined your prior distribution over X...
- Bayesian: Doesn't matter how you determined prior, but you must have one (whatever it is)

Subjectivity of Probability

- Belief about contents of envelopes
- Since implied distribution over X is not a true probability distribution, what is our distribution over X ?
- Frequentist: play game infinitely many times and see how often different values come up.
- Problem: I only allow you to play the game once
- Bayesian probability
- Have prior belief of distribution for X (or anything for that matter)
- Prior belief is a subjective probability
- By extension, all probabilities are subjective
- Allows us to answer question when we have no/limited data
- E.g., probability a coin you've never flipped lands on heads - As we get more data, prior belief is "swamped" by data

Revisting Bayes Theorem

- Bayes Theorem ($\theta=$ model parameters, $\mathrm{D}=\mathrm{data}$):

- Likelihood: you've seen this before (in context of MLE) - Probability of data given probability model (parameter θ)
- Prior: before seeing any data, what is belief about model - I.e., what is distribution over parameters θ
- Posterior: after seeing data, what is belief about model
-After data D observed, have posterior distribution p($\theta \mid \mathrm{D})$ over parameters θ conditioned on data. Use this to predict new data.
- Here, we assume prior and posterior distribution have same parametric form (we call them "conjugate")

Computing $\mathrm{P}(\theta \mid \mathrm{D})$

- Bayes Theorem ($\theta=$ model parameters, $\mathrm{D}=$ data):

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

- We have prior $P(\theta)$ and can compute $P(D \mid \theta)$
- But how do we calculate $P(D)$?
- Complicated answer: $P(D)=\int P(D \mid \theta) P(\theta) d \theta$
- Easy answer: It is does not depend on θ, so ignore it
- Just a constant that forces $\mathrm{P}(\theta \mid \mathrm{D})$ to integrate to 1

P($\theta \mid \mathrm{D})$ for Beta and Bernoulli

- Prior: $\theta \sim \operatorname{Beta}(a, b) ; \mathrm{D}=\{n$ heads, m tails $\}$
$f_{\theta \mid D}(\theta=p \mid D)=\frac{f_{D \mid \theta}(D \mid \theta=p) f_{\theta}(\theta=p)}{f_{D}(D)}$

$$
\begin{aligned}
& =\frac{\binom{n+m}{n} p^{n}(1-p)^{m} \cdot \frac{p^{a-1}(1-p)^{b-1}}{C_{1}}}{C_{2}}=\frac{\binom{n+m}{n}}{C_{1} C_{2}} p^{n}(1-p)^{m} \cdot p^{a-1}(1-p)^{b-1} \\
& =C_{2} p^{n+a-1}(1-p)^{m+b-1}
\end{aligned}
$$

- By definition, this is $\operatorname{Beta}(a+n, b+m)$
- All constant factors combine into a single constant
- Could just ignore constant factors along the way

Where'd Ya Get Them $\mathrm{P}(\theta)$?

- θ is the probability a coin turns up heads
- Model θ with 2 different priors:
- $P_{1}(\theta)$ is $\operatorname{Beta}(3,8)$ (blue)
- $P_{2}(\theta)$ is $\operatorname{Beta}(7,4)$ (red)
- They look pretty different!

- Now flip 100 coins; get 58 heads and 42 tails
- What do posteriors look like?

It's Like Having Twins

- As long as we collect enough data, posteriors will converge to the correct value!

From MLE to Maximum A Posteriori

- Recall Maximum Likelihood Estimator (MLE) of θ

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)
$$

- Maximum A Posteriori (MAP) estimator of θ :
$\theta_{M A P}=\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)=\underset{\theta}{\arg \max } \frac{f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right) g(\theta)}{h\left(X_{1}, X_{2}, \ldots, X_{n}\right)}$

$$
=\underset{\theta}{\arg \max } \frac{\left(\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)\right) g(\theta)}{h\left(X_{1}, X_{2}, \ldots, X_{n}\right)}=\underset{\theta}{\arg \max } g(\theta) \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)
$$

where $g(\theta)$ is prior distribution of θ.

- As before, can often be more convenient to use log:

$$
\theta_{M A P}=\underset{\theta}{\arg \max }\left(\log (g(\theta))+\sum_{i=1}^{n} \log \left(f\left(X_{i} \mid \theta\right)\right)\right)
$$

- MAP estimate is the mode of the posterior distribution

Conjugate Distributions Without Tears

- Just for review...
- Have coin with unknown probability θ of heads
- Our prior (subjective) belief is that $\theta \sim \operatorname{Beta}(a, b)$
- Now flip coin $k=n+m$ times, getting n heads, m tails
- Posterior density: $(\theta \mid n$ heads, m tails $) \sim \operatorname{Beta}(a+n, b+m)$
- Beta is conjugate for Bernoulli, Binomial, Geometric, and Negative Binomial
- a and b are called "hyperparameters" Saw $(a+b-2)$ imaginary trials, of those $(a-1)$ are "successes"
- For a coin you never flipped before, use $\operatorname{Beta}(x, x)$ to denote you think coin likely to be fair - How strongly you feel coin is fair is a function of x

Multinomial is Multiple Times the Fun

- $\operatorname{Dirichlet}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ distribution
- Conjugate for Multinomial
- Dirichlet generalizes Beta in same way Multinomial generalizes Bernoulli/Binomial

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{B\left(a_{1}, a_{2}, \ldots, a_{n}\right)} \prod_{i=1}^{n} x_{i}^{a_{i}-1}
$$

- Intuitive understanding of hyperparameters:

$$
\text { 。Saw } \sum_{i=1}^{m} a_{i}-m \text { imaginary trials, with }\left(a_{i}-1\right) \text { of outcome } i
$$

- Updating to get the posterior distribution
- After observing $n_{1}+n_{2}+\ldots+n_{m}$, new trials with n_{i} of outcome $i . .$.
- ... posterior distribution is $\operatorname{Dirichlet}\left(a_{1}+n_{1}, a_{2}+n_{2}, \ldots, a_{m}+n_{m}\right)$

Best Short Film in the Dirichlet Category

- And now a cool animation of $\operatorname{Dirichlet(a,~a,~a)~}$
- This is actually \log density (but you get the idea...)

Getting Back to your Happy Laplace

- Recall example of 6-sides die rolls:
- $X \sim \operatorname{Multinomial}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$
- Roll $n=12$ times
- Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes - MLE: $p_{1}=3 / 12, p_{2}=2 / 12, p_{3}=0 / 12, p_{4}=3 / 12, p_{5}=1 / 12, p_{6}=3 / 12$
- Dirichlet prior allows us to pretend we saw each outcome k times before. MAP estimate: $p_{i}=\frac{X_{i}+k}{n+m k}$
- Laplace's "law of succession": idea above with $k=1$
- Laplace estimate: $p_{i}=\frac{X_{i}+1}{n+m}$
- Laplace: $p_{1}=4 / 18, p_{2}=3 / 18, p_{3}=1 / 18, p_{4}=4 / 18, p_{5}=2 / 18, p_{6}=4 / 18$
- No longer have 0 probability of rolling a three

Good Times With Gamma

- Gamma (α, λ) distribution
- Conjugate for Poisson
- Also conjugate for Exponential, but we won't delve into that
- Intuitive understanding of hyperparameters:
- Saw α total imaginary events during λ prior time periods
- Updating to get the posterior distribution
-After observing n events during next k time periods..
。... posterior distribution is $\operatorname{Gamma}(\alpha+n, \lambda+k)$
- Example: Gamma(10, 5)
- Saw 10 events in 5 time periods. Like observing at rate $=2$
- Now see 11 events in next 2 time periods \rightarrow Gamma(21, 7)
- Equivalent to updated rate $=3$

It's Normal to Be Normal

- $\operatorname{Normal}\left(\mu_{0}, \sigma_{0}{ }^{2}\right)$ distribution
- Conjugate for Normal (with unknown μ, known σ^{2})
- Intuitive understanding of hyperparameters:
- A priori, believe true μ distributed $\sim N\left(\mu_{0}, \sigma_{0}{ }^{2}\right)$
- Updating to get the posterior distribution
- After observing n data points...
- ... posterior distribution is:

$$
N\left(\left(\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{\sum_{i=1}^{n} x_{i}}{\sigma^{2}}\right) /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right), \quad\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)^{-1}\right)
$$

