Two Envelopes Revisited

- The “two envelopes” problem set-up

= Two envelopes: one contains $X, other contains $2X
= You select an envelope and open it
o LetY =$in envelope you selected
o LetZ = $in other envelope
ElZ|Y]= %+32v =3y
= Before opening envelope, think either equally good
- So, what happened by opening envelope?
= E[Z] Y] above assumes all values X (where 0 < X < )
are equally likely
o Note: there are infinitely many values of X
o So, not true probability distribution over X (doesn’t integrate to 1)

Subjectivity of Probability

- Belief about contents of envelopes
= Since implied distribution over X is not a true probability
distribution, what is our distribution over X?

o Frequentist: play game infinitely many times and see how often
different values come up.

- Problem: | only allow you to play the game once
= Bayesian probability
o Have prior belief of distribution for X (or anything for that matter)
o Prior beliefis a subjective probability
« By extension, all probabilities are subjective
o Allows us to answer question when we have no/limited data
« E.g., probability a coin you've never flipped lands on heads
- As we get more data, prior belief is “swamped” by data

The Envelope, Please

Bayesian: have prior distribution over X, P(X)

= LetY = $in envelope you selected

= LetZ = $in other envelope

= Open your envelope to determine Y

= If Y > E[Z ] Y], keep your envelope, otherwise switch
o Noinconsistency!

= Opening envelop provides data to compute P(X | Y)
and thereby compute E[Z | Y]

= Of course, there’s the issue of how you determined
your prior distribution over X...

- Bayesian: Doesn’t matter how you determined prior, but you
must have one (whatever it is)

Revisting Bayes Theorem

- Bayes Theorem (6 = model parameters, D = data):

“Posterior” “Likeli{(iod” “Prior”
P(D]6) P(6)
POID)= ——pmy

= Likelihood: you've seen this before (in context of MLE)
o Probability of data given probability model (parameter 0)
= Prior: before seeing any data, what is belief about model
o lLe., what is distribution over parameters 6
= Posterior: after seeing data, what is belief about model
o After data D observed, have posterior distribution p(6 | D) over
parameters 0 conditioned on data. Use this to predict new data.
o Here, we assume prior and posterior distribution have same
parametric form (we call them “conjugate”)

Computing P(6 | D)
Bayes Theorem (6 = model parameters, D = data):

P(D]6) P(O)

P@©|D)= P(D)

We have prior P(6) and can compute P(D | 6)
But how do we calculate P(D)?
« Complicated answer: P(D):IP(D|¢9)P(6’)d9

« Easy answer: It is does not depend on 6, so ignore it

« Just a constant that forces P(0 | D) to integrate to 1

P(6 | D) for Beta and Bernoulli

« Prior: 6 ~ Beta(a, b); D ={n heads, m tails}
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« By definition, this is Beta(a + n, b + m)
« All constant factors combine into a single constant
. Could just ignore constant factors along the way




Where’d Ya Get Them P(0)?

« 0 is the probability a coin turns up heads
. Model 6 with 2 different priors:

. P,(0) is Beta(3,8) (blue)

« P,(0) is Beta(7,4) (red)
. They look pretty different!

« Now flip 100 coins; get 58 heads and 42 tails
« What do posteriors look like?

It’s Like Having Twins
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. As long as we collect enough data, posteriors will
converge to the correct value!

From MLE to Maximum A Posteriori

- Recall Maximum Likelihooﬂd Estimator (MLE) of 4
Oe =arg;nax1;[ f(X,10)
- Maximum A Posteriori (MAP) estimator of &:
e :arg;nax f(:)| Xy Xy ey Xn):arg;naxW
(Hf(X.IH) 9(9) .
:arg[r)naxm:arg;nax g(e)l;[f(x, |6)
where g(6) is prior distribution of 6.
= As before, can often be more convenient to use log:
Oe :ngﬁ[log(g(ﬁ))+glog( f(X; \9))]

= MAP estimate is the mode of the posterior distribution

Conjugate Distributions Without Tears

- Just for review...

Have coin with unknown probability 6 of heads

= Our prior (subjective) belief is that 6 ~ Beta(a, b)

= Now flip coin k = n + m times, getting n heads, m tails

= Posterior density: (6 | n heads, m tails) ~Beta(a+n, b+m)

- Beta is conjugate for Bernoulli, Binomial, Geometric, and
Negative Binomial

= aand b are called “hyperparameters”
o Saw (a + b — 2) imaginary trials, of those (a — 1) are “successes”

= For a coin you never flipped before, use Beta(x, x) to
denote you think coin likely to be fair
o How strongly you feel coin is fair is a function of x
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Multinomial is Multiple Times the Fun

- Dirichlet(a,, a,, ..., a,,) distribution
= Conjugate for Multinomial

- Dirichlet generalizes Beta in same way Multinomial generalizes
Bernoulli/Binomial

1 e
=" X
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= Intuitive understanding of hyperparameters:
o Saw ia, —m imaginary trials, with (a; — 1) of outcome i
= Updating to get the posterior distribution

o After observing n; + n, + ... + n,,, new trials with n; of outcome ...
o ... posterior distribution is Dirichlet(a; + ny, a, + ny, ..., &, + Ny)




Best Short Film in the Dirichlet Category

- And now a cool animation of Dirichlet(a, a, a)
= This is actually log density (but you get the idea...)

. Thanks
0 Wikipedia!

Getting Back to your Happy Laplace

- Recall example of 6-sides die rolls:
= X~ Multinomial(py, P2, P3s Pas Ps: Pe)
= Rolln =12 times
= Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
o MLE: p;=3/12, p,=2/12, p,=0/12, p,=3/12, ps=1/12, ps=3/12

= Dirichlet prior allows us to pretend we saw eaxch .
outcome k times before. MAP estimate: p, =~

n+mk
o Laplace’s “law of succession”: idea above with k = 1
. X;+1
- Laplace estimate: p, =—
n+m

o Laplace: p,=4/18, p,=3/18, p;=1/18, p,=4/18, ps=2/18, ps=4/18

o No longer have 0 probability of rolling a three!

Good Times With Gamma

- Gammay(o, A) distribution
= Conjugate for Poisson
o Also conjugate for Exponential, but we won’t delve into that
= Intuitive understanding of hyperparameters:
- Saw « total imaginary events during A prior time periods
= Updating to get the posterior distribution
o After observing n events during next k time periods...
> ... posterior distribution is Gamma(a + n, A + k)

- Example: Gamma(10, 5)

- Saw 10 events in 5 time periods. Like observing at rate = 2
- Now see 11 events in next 2 time periods > Gamma(21, 7)
- Equivalentto updated rate = 3

It’s Normal to Be Normal

- Normal(u,, 6,2) distribution
= Conjugate for Normal (with unknown p, known c?2)
= Intuitive understanding of hyperparameters:
o A priori, believe true p distributed ~ N(p,, 602)
= Updating to get the posterior distribution
o After observing n data points...

o ... posterior distribution is:
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