Two Envelopes Revisited

- · The "two envelopes" problem set-up
 - Two envelopes: one contains \$X, other contains \$2X
 - You select an envelope and open it
 Let Y = \$ in envelope you selected
 - Let Z =\$ in other envelope
 - $E[Z | Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$ • Before opening envelope, think either <u>equally</u> good
 - So, what happened by opening envelope?
 - E[Z | Y] above assumes all values X (where 0 < X < ∞) are equally likely
 - Note: there are infinitely many values of X
 - So, not true probability distribution over X (doesn't integrate to 1)

Subjectivity of Probability

- · Belief about contents of envelopes
 - Since implied distribution over X is not a true probability distribution, what is our distribution over X?
 - Frequentist: play game infinitely many times and see how often different values come up.
 - Problem: I only allow you to play the game once
 - Bayesian probability
 - Have <u>prior</u> belief of distribution for X (or anything for that matter)
 Prior belief is a subjective probability
 - By extension, <u>all</u> probabilities are subjective
 - Allows us to answer question when we have no/limited data
 - E.g., probability a coin you've never flipped lands on heads
 - As we get more data, prior belief is "swamped" by data

The Envelope, Please

- Bayesian: have prior distribution over X, P(X)
 - Let Y = \$ in envelope you selected
 - Let Z = \$ in other envelope
 - Open your envelope to determine Y
 - If Y > E[Z | Y], keep your envelope, otherwise switch
 No inconsistency!
 - Opening envelop provides data to compute $\mathsf{P}(X \mid Y)$ and thereby compute $\mathsf{E}[Z \mid Y]$
 - Of course, there's the issue of how you determined your prior distribution over X...
 - Bayesian: Doesn't matter how you determined prior, but you must have one (whatever it is)

 Here, we assume prior and posterior distribution have parametric form (we call them "conjugate")

Computing $P(\theta \mid D)$ • Bayes Theorem (θ = model parameters, D = data): $P(\theta \mid D) = -\frac{P(D \mid \theta) P(\theta)}{P(D)}$ • We have prior P(θ) and can compute P(D | θ) • But how do we calculate P(D)? • Complicated answer: $P(D) = \left[P(D \mid \theta)P(\theta) d\theta\right]$

Easy answer: It is does not depend on θ, so ignore it
 Just a constant that forces P(θ | D) to integrate to 1

· Could just ignore constant factors along the way

Conjugate Distributions Without Tears

- Just for review...
- Have coin with unknown probability $\boldsymbol{\theta}$ of heads
 - Our prior (subjective) belief is that θ ~ Beta(a, b)
 - Now flip coin k = n + m times, getting *n* heads, *m* tails
 - Posterior density: (θ | n heads, m tails) ~ Beta(a+n, b+m)
 Beta is conjugate for Bernoulli, Binomial, Geometric, and Negative Binomial
 - a and b are called "hyperparameters"
 - Saw (a + b 2) imaginary trials, of those (a 1) are "successes"
 - For a coin you never flipped before, use Beta(*x*, *x*) to denote you think coin likely to be fair
 - $_{\circ}$ How strongly you feel coin is fair is a function of x

Getting Back to your Happy Laplace

- · Recall example of 6-sides die rolls:
 - X ~ Multinomial($p_1, p_2, p_3, p_4, p_5, p_6$)
 - Roll n = 12 times
 - Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
 MLE: p₁=3/12, p₂=2/12, p₃=0/12, p₄=3/12, p₅=1/12, p₆=3/12
 - Dirichlet prior allows us to pretend we saw each outcome *k* times before. MAP estimate: $p_i = \frac{X_i + k}{n + mk}$
 - $_{\circ}$ Laplace's "law of succession": idea above with k = 1
 - Laplace estimate: $p_i = \frac{X_i + 1}{n + m}$
 - Laplace: p₁=4/18, p₂=3/18, p₃=1/18, p₄=4/18, p₅=2/18, p₆=4/18
 - o No longer have 0 probability of rolling a three!

Good Times With Gamma

- Gamma(α, λ) distribution
 - Conjugate for Poisson
 Also conjugate for Exponential, but we won't delve into that
 - · Also conjugate for Exponential, but we won't delive into t
 - Intuitive understanding of hyperparameters:
 Saw α total imaginary events during λ prior time periods
 - Updating to get the posterior distribution
 - After observing *n* events during next *k* time periods...
 - ... posterior distribution is Gamma($\alpha + n, \lambda + k$)
 - 。 Example: Gamma(10, 5)
 - Saw 10 events in 5 time periods. Like observing at rate = 2
 - $_{\circ}~$ Now see 11 events in next 2 time periods \rightarrow Gamma(21, 7)
 - $_{\circ}~$ Equivalent to updated rate = 3

It's Normal to Be Normal

- Normal(μ_0, σ_0^2) distribution
 - Conjugate for Normal (with unknown $\mu,$ known $\sigma^2\!)$
 - Intuitive understanding of hyperparameters:
 - $_{\circ}~$ A priori, believe true μ distributed ~ N($\mu_{0},\,\sigma_{0}{}^{2})$
 - Updating to get the posterior distribution
 - After observing *n* data points...
 - $\circ \ \ \text{...posterior distribution is:} \\ N\!\!\left(\!\left(\frac{\mu_0}{\sigma_0^2}\!+\!\frac{\sum_{i=1}^n \lambda_i}{\sigma^2}\right)\!\!\left/\!\left(\frac{1}{\sigma_0^2}\!+\!\frac{n}{\sigma^2}\right)\!, \ \left(\frac{1}{\sigma_0^2}\!+\!\frac{n}{\sigma^2}\right)^{\!-1}\right)\right.$