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Two Envelopes Revisited

• The “two envelopes” problem set-up

 Two envelopes: one contains $X, other contains $2X

 You select an envelope and open it

o Let Y = $ in envelope you selected

o Let Z = $ in other envelope

 Before opening envelope, think either equally good

o So, what happened by opening envelope?

 E[Z | Y] above assumes all values X (where 0 < X < ) 

are equally likely

o Note: there are infinitely many values of X

o So, not true probability distribution over X (doesn’t integrate to 1)
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Subjectivity of Probability

• Belief about contents of envelopes

 Since implied distribution over X is not a true probability 

distribution, what is our distribution over X?

o Frequentist: play game infinitely many times and see how often 

different values come up.

o Problem: I only allow you to play the game once

 Bayesian probability

o Have prior belief of distribution for X (or anything for that matter)

o Prior belief is a subjective probability

• By extension, all probabilities are subjective

o Allows us to answer question when we have no/limited data

• E.g., probability a coin you’ve never flipped lands on heads

o As we get more data, prior belief is “swamped” by data

The Envelope, Please

• Bayesian: have prior distribution over X, P(X)

 Let Y = $ in envelope you selected

 Let Z = $ in other envelope

 Open your envelope to determine Y

 If Y > E[Z | Y], keep your envelope, otherwise switch

o No inconsistency!

 Opening envelop provides data to compute P(X | Y) 

and thereby compute E[Z | Y]

 Of course, there’s the issue of how you determined 

your prior distribution over X…

o Bayesian: Doesn’t matter how you determined prior, but you 

must have one (whatever it is)

Revisting Bayes Theorem

• Bayes Theorem ( = model parameters, D = data):

 Likelihood: you’ve seen this before (in context of MLE)

o Probability of data given probability model (parameter )

 Prior: before seeing any data, what is belief about model

o I.e., what is distribution over parameters 

 Posterior: after seeing data, what is belief about model

o After data D observed, have posterior distribution p( | D) over 

parameters  conditioned on data.  Use this to predict new data.

o Here, we assume prior and posterior distribution have same 

parametric form (we call them “conjugate”)

P(D | ) P()

P(D)
P( | D) =

“Prior”“Likelihood”“Posterior”

Computing P(θ | D)

• Bayes Theorem ( = model parameters, D = data):

• We have prior P() and can compute P(D | )

• But how do we calculate P(D)?

• Complicated answer: 

• Easy answer: It is does not depend on , so ignore it

• Just a constant that forces P( | D) to integrate to 1

P(D | ) P()

P(D)
P( | D) =

  dPDPDP  )()|()(

P(θ | D) for Beta and Bernoulli

 Prior:  ~ Beta(a, b);  D = {n heads, m tails}

 By definition, this is Beta(a + n, b + m)

 All constant factors combine into a single constant

 Could just ignore constant factors along the way
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Where’d Ya Get Them P()?

  is the probability a coin turns up heads

 Model  with 2 different priors:

 P
1
() is Beta(3,8) (blue)

 P
2
() is Beta(7,4) (red)

 They look pretty different!

 Now flip 100 coins; get 58 heads and 42 tails

 What do posteriors look like?

It’s Like Having Twins

 As long as we collect enough data, posteriors will 
converge to the correct value!

From MLE to Maximum A Posteriori

• Recall Maximum Likelihood Estimator (MLE) of 

• Maximum A Posteriori (MAP) estimator of  :

where g() is prior distribution of .

 As before, can often be more convenient to use log:

 MAP estimate is the mode of the posterior distribution
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Conjugate Distributions Without Tears

• Just for review…

• Have coin with unknown probability  of heads

 Our prior (subjective) belief is that  ~ Beta(a, b)

 Now flip coin k = n + m times, getting n heads, m tails

 Posterior density: ( | n heads, m tails)~ Beta(a+n,b+\m)

o Beta is conjugate for Bernoulli, Binomial, Geometric, and 

Negative Binomial

 a and b are called “hyperparameters”

o Saw (a + b – 2) imaginary trials, of those (a – 1) are “successes”

 For a coin you never flipped before, use Beta(x, x) to 

denote you think coin likely to be fair

o How strongly you feel coin is fair is a function of x

Mo’ Beta Multinomial is Multiple Times the Fun

• Dirichlet(a1, a2, ..., am) distribution

 Conjugate for Multinomial

o Dirichlet generalizes Beta in same way Multinomial generalizes 

Bernoulli/Binomial

 Intuitive understanding of hyperparameters:

o Saw             imaginary trials, with (ai – 1) of outcome i

 Updating to get the posterior distribution

o After observing n1 + n2 + ... + nm, new trials with ni of outcome i...

o ... posterior distribution is Dirichlet(a1+ n1, a2 + n2, ..., am + nm)
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Best Short Film in the Dirichlet Category

• And now a cool animation of Dirichlet(a, a, a)

 This is actually log density (but you get the idea…)

Thanks 

Wikipedia!

Getting Back to your Happy Laplace

• Recall example of 6-sides die rolls:

 X ~ Multinomial(p1, p2, p3, p4, p5, p6)

 Roll n = 12 times

 Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

o MLE: p1=3/12, p2=2/12, p3=0/12, p4=3/12, p5=1/12, p6=3/12

 Dirichlet prior allows us to pretend we saw each 

outcome k times before.  MAP estimate:

o Laplace’s “law of succession”: idea above with k = 1

o Laplace estimate:

o Laplace: p1=4/18, p2=3/18, p3=1/18, p4=4/18, p5=2/18, p6=4/18

o No longer have 0 probability of rolling a three!
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Good Times With Gamma

• Gamma(a, l) distribution

 Conjugate for Poisson

o Also conjugate for Exponential, but we won’t delve into that

 Intuitive understanding of hyperparameters:

o Saw a total imaginary events during l prior time periods

 Updating to get the posterior distribution

o After observing n events during next k time periods...

o ... posterior distribution is Gamma(a + n, l + k)

o Example: Gamma(10, 5) 

o Saw 10 events in 5 time periods.  Like observing at rate = 2

o Now see 11 events in next 2 time periods  Gamma(21, 7)

o Equivalent to updated rate = 3

It’s Normal to Be Normal

• Normal(m0, s0
2) distribution

 Conjugate for Normal (with unknown m, known s2)

 Intuitive understanding of hyperparameters:

o A priori, believe true m distributed ~ N(m0, s0
2) 

 Updating to get the posterior distribution

o After observing n data points...

o ... posterior distribution is:
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http://upload.wikimedia.org/wikipedia/en/5/54/LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif

