

Strong Law of Large Numbers • Consider I.I.D. random variables X₁, X₂, ... • X_i have distribution *F* with E[X_i] = μ • Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $P\left(\lim_{n \to \infty} \left(\frac{X_1 + X_2 + ... + X_n}{n}\right) = \mu\right) = 1$ • Strong Law \Rightarrow Weak Law, but not vice versa • Strong Law implies that for any $\varepsilon > 0$, there are only a finite number of values of *n* such that condition of

Weak Law: $|\overline{X} - \mu| \ge \varepsilon$ holds.

Intuitions and Misconceptions of LLN • Say we have repeated trials of an experiment • Let event E = some outcome of experiment • Let X_i = 1 if E occurs on trial *i*, 0 otherwise • Strong Law of Large Numbers (Strong LLN) yields: $\frac{X_1 + X_2 + \dots + X_n}{n} \rightarrow E[X] = P(E)$ • Recall first week of class: $P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$ • Strong LLN justifies "frequency" notion of probability • Misconceptions arising from LLN: • Regression toward the mean (not related to LLN) • Gambler's fallacy: "I'm due for a win" • Consider being "due for a win" with repeated coin flips...

 Mean quality of subsamples of episodes is Normally distributed (thanks to the Central Limit Theorem)

Central Limit Theorem in Real World

- CLT is why many things in "real world" appear Normally distributed
 - · Many quantities are sum of independent variables
 - Exams scores
 - Sum of individual problems
 - Election polling
 - Ask 100 people if they will vote for candidate X (p₁ = # "yes"/100)
 - $_{\circ}~$ Repeat this process with different groups to get $p_{1},\,...\,,\,p_{n}$
 - Have a normal distribution over p_i
 - 。 Can produce a "confidence interval
 - · How likely is it that estimate for true p is correct
 - · We'll do an example like that soon

