Weak Law of Large Numbers

- Consider I.I.D. random variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$
- X_{i} have distribution F with $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]=\mu$ and $\operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}\right)=\sigma^{2}$
- Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- For any $\varepsilon>0$:

$$
P(|\bar{X}-\mu| \geq \varepsilon) \xrightarrow{n \rightarrow \infty} 0
$$

- Proof:

$$
E[\bar{X}]=E\left[\frac{x_{1}+X_{2}+\ldots+X_{n}}{n}\right]=\mu \quad \operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{x_{1}+X_{2}+\ldots+x_{n}}{n}\right)=\frac{\sigma^{2}}{n}
$$

- By Chebyshev's inequality:

$$
P(|\bar{X}-\mu| \geq \varepsilon) \leq \frac{\sigma^{2}}{n \varepsilon^{2}} \xrightarrow{n \rightarrow \infty} 0
$$

Strong Law of Large Numbers

- Consider I.I.D. random variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$
- X_{i} have distribution F with $\mathrm{E}\left[\mathrm{X}_{i}\right]=\mu$
- Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

$$
P\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}\right)=\mu\right)=1
$$

- Strong Law \Rightarrow Weak Law, but not vice versa
- Strong Law implies that for any $\varepsilon>0$, there are only a finite number of values of n such that condition of Weak Law: $|\bar{X}-\mu| \geq \varepsilon$ holds.

Intuitions and Misconceptions of LLN

- Say we have repeated trials of an experiment
- Let event $\mathrm{E}=$ some outcome of experiment
- Let $\mathrm{X}_{i}=1$ if E occurs on trial $i, 0$ otherwise
- Strong Law of Large Numbers (Strong LLN) yields:

$$
\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \rightarrow E[X]=P(E)
$$

- Recall first week of class: $P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}$
- Strong LLN justifies "frequency" notion of probability
- Misconceptions arising from LLN:
- Regression toward the mean (not related to LLN)
- Gambler's fallacy: "I'm due for a win"
- Consider being "due for a win" with repeated coin flips..
\qquad

And now a moment of silence...
...before we present...
...the greatest result of probability theory!

La Loi des Grands Nombres

- History of the Law of Large Numbers
- 1713: Weak LLN described by Jacob Bernoulli

- 1835: Poisson calls it "La Loi des Grands Nombres"
- That would be "Law of Large Numbers" in French
- 1909: Émile Borel develops Strong LLN for Bernoulli random variables
- 1928: Andrei Nikolaevich Kolmogorov proves Strong LLN in general case
- 2009: Another year passes in which Charlie Sheen does not make use of LLN
- I'm still holding out hope for 2010...

The Central Limit Theorem (CLT)

- Consider I.I.D. random variables X_{1}, X_{2}, \ldots
- X_{i} have distribution F with $\mathrm{E}\left[\mathrm{X}_{i}\right]=\mu$ and $\operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}\right)=\sigma^{2}$

$$
\frac{X_{1}+X_{2}+\ldots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow N(0,1) \text { as } n \rightarrow \infty
$$

- More intuitively:
- Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Central Limit Theorem: $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ as $\mathrm{n} \rightarrow \infty$
- Now let $Z=\frac{\overline{\mathrm{X}}-\mu}{\sqrt{\sigma^{2} / n}}$, noting that $Z \sim N(0,1)$:
$\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \Leftrightarrow Z=\frac{\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)-\mu}{\sqrt{\sigma^{2} / n}}=\frac{n\left[\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)-\mu\right]}{n \sqrt{\sigma^{2} / n}}=\frac{\left(\sum_{i=1}^{n} X_{i}\right)-n \mu}{\sigma \sqrt{n}}$

No Limits for Central Limit Theorem

- History of the Central Limit Theorem
- 1733: CLT for X ~ $\operatorname{Ber}(1 / 2)$ postulated by Abraham de Moivre
1823: Pierre-Simon Laplace extends de Moivre's work to approximating $\operatorname{Bin}(\mathrm{n}, \mathrm{p})$ with Normal
1901: Aleksandr Lyapunov provides precise definition and rigorous proof of CLT
- 2003: Charlie Sheen stars in television series
 "Two and Half Men"
- By end of current (7th) season, there will be 161 episodes
- Mean quality of subsamples of episodes is Normally distributed (thanks to the Central Limit Theorem)

Central Limit Theorem in Real World

- CLT is why many things in "real world" appear Normally distributed
- Many quantities are sum of independent variables
- Exams scores
- Sum of individual problems
- Election polling

。Ask 100 people if they will vote for candidate X ($p_{1}=$ \# "yes"/100)

- Repeat this process with different groups to get p_{1}, \ldots, p_{n}
- Have a normal distribution over p_{i}
- Can produce a "confidence interval"
- How likely is it that estimate for true p is correct
- We'll do an example like that soon

This is Your Midterm on the CLT

- Start with 70 midterm scores: $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{70}$
- $\mathrm{E}\left[\mathrm{X}_{i}\right]=89.6$ and $\operatorname{Var}\left(\mathrm{X}_{i}\right)=648.2$
- Created 14 disjoint samples of size $n=5$
- $Y_{1}=\left\{X_{1}, X_{2}, \ldots, X_{5}\right\}, Y_{2}=\left\{X_{6}, X_{7}, \ldots, X_{10}\right\}, Y_{i}=\left\{X_{5 i 4}, X_{5 i 3}, \ldots, X_{5 j}\right\}$
$\bar{Y}_{i}=\frac{1}{5} \sum_{j=5 i-4}^{5 i} Y_{j} \quad \overline{\bar{Y}}_{i}=\frac{1}{14} \sum_{j=1}^{14} \bar{Y}_{j}=89.6 \quad \operatorname{Var}\left(\bar{Y}_{i}\right)=134.5$
- Prediction by CLT: $\bar{Y}_{i} \sim \mathrm{~N}(89.6,648.2 / 5=129.6)$
$Z_{i}=\frac{\bar{Y}_{i}-E\left[X_{i}\right]}{\sqrt{\sigma^{2} / n}}=\frac{\bar{Y}_{i}-89.6}{\sqrt{648.2 / 5}} \quad \bar{Z}=\frac{1}{14} \sum_{i=1}^{14} Z_{i}=0.0025 \quad \operatorname{Var}(\bar{Z})=1.0377$

Estimating Time With Chebyshev

- Have new algorithm to test for running time
- Mean (clock) running time: $\mu=t$ sec.
- Variance of running time: $\sigma^{2}=4 \mathrm{sec}^{2}$.
- Run algorithm repeatedly (I.I.D. trials), measure time
- How many trials so estimated time $=t \pm 0.5$ with 95% certainty?
- $\mathrm{X}_{i}=$ running time of i-th run (for $1 \leq \mathrm{i} \leq n$)
- What would Chebyshev say? $P\left(\left|X_{S}-\mu_{S}\right| \geq k\right) \leq \frac{\sigma_{S}{ }^{2}}{k^{2}}$

$$
\begin{aligned}
& \quad \mu_{s}=E\left[\sum_{i=1}^{n} \frac{X_{i}}{n}\right]=t \quad \sigma_{s}{ }^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)=n \frac{\sigma^{2}}{n^{2}}=\frac{4}{n} \\
& P\left(\left|\sum_{i=1}^{n} \frac{X_{i}}{n}-t\right| \geq 0.5\right) \leq \frac{4 / n}{(0.5)^{2}}=\frac{16}{n}=0.05 \Rightarrow n \geq 320 \\
& \text { - Thanks for playing Pafnuty } \ldots
\end{aligned}
$$

Estimating Clock Running Time

- Have new algorithm to test for running time
- Mean (clock) running time: $\mu=t$ sec.
- Variance of running time: $\sigma^{2}=4 \mathrm{sec}^{2}$.
- Run algorithm repeatedly (I.I.D. trials), measure time - How many trials so estimated time $=t \pm 0.5$ with 95% certainty?
- $\mathrm{X}_{i}=$ running time of i-th run (for $1 \leq \mathrm{i} \leq n$)
- By Central Limit Theorem, Z ~N(0, 1), where:

$$
Z_{n}=\frac{\left(\sum_{i=1}^{n} X_{i}\right)-n \mu}{\sigma \sqrt{n}}=\frac{\left(\sum_{i=1}^{n} X_{i}\right)-n t}{2 \sqrt{n}}
$$

$P\left(-0.5 \leq \frac{\sum_{i=1}^{n} X_{i}}{n}-t \leq 0.5\right)=P\left(\frac{-0.5 \sqrt{n}}{2} \leq \frac{\sqrt{n}}{2} \frac{\left(\sum_{i=1}^{n} X_{i}\right)-n t}{n} \leq \frac{0.5 \sqrt{n}}{2}\right)=P\left(\frac{-0.5 \sqrt{n}}{2} \leq Z_{n} \leq \frac{0.5 \sqrt{n}}{2}\right)$
$=\Phi\left(\frac{\sqrt{n}}{4}\right)-\Phi\left(\frac{-\sqrt{n}}{4}\right)=\Phi\left(\frac{\sqrt{n}}{4}\right)-\left(1-\Phi\left(\frac{\sqrt{n}}{4}\right)\right)=2 \Phi\left(\frac{\sqrt{n}}{4}\right)-1 \approx 0.95 \Rightarrow \Phi\left(\frac{\sqrt{n^{*}}}{4}\right)=0.975$

- Solve for $\mathrm{n}^{*}: \frac{\sqrt{n^{*}}}{4}=1.96 \Rightarrow n^{*}=\left[(7.84)^{2}\right]=62$

Crashing Your Web Site

- Number visitors to web site/minute: X ~ Poi(100)
- Server crashes if ≥ 120 requests/minute
- What is P (crash in next minute)?
- Exact solution: $P(X \geq 120)=\sum_{i=120}^{\infty} \frac{e^{-100}(100)^{i}}{i!} \approx 0.0282$
- Use CLT, where $\operatorname{Poi}(100) \sim n \operatorname{Poi}(100 / n)$ (all I.I.D)
$P(X \geq 120)=P(X \geq 119.5)=P\left(\frac{X-100}{\sqrt{100}} \geq \frac{119.5-100}{\sqrt{100}}\right)=1-\Phi(1.95) \approx 0.0256$
Note: Normal can be used to approximate Poisson
- I'll give you one more chance (one-sided) Chebyshev:
$P(X \geq 120)=P(X \geq E[X]+a) \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}=\frac{100}{100+20^{2}}=0.2$

Sum of Dice

- You will roll 106 -sided dice
- $X=$ total value of all 10 dice
- Win if: $X \leq 25$ or $X \geq 45$

I need a volunteer

- Roll!
- And now the truth (according to the CLT):
$E[X]=10 E\left[X_{i}\right]=10(3.5)=35 \quad \operatorname{Var}(X)=10 \operatorname{Var}\left(X_{i}\right)=10 \frac{35}{12}=\frac{350}{12}$
$1-P(25.5 \leq X \leq 44.5)=1-P\left(\frac{25.5-35}{\sqrt{350 / 12}} \leq \frac{X-35}{\sqrt{350 / 12}} \leq \frac{44.5-35}{\sqrt{350 / 12}}\right)$
$\approx 1-(2 \Phi(1.76)-1) \approx 2(1-0.9608)=0.0784$
- If only Chebyshev were right.
$P(|X-\mu| \geq k)=P(|X-35| \geq 10) \leq \frac{\sigma^{2}}{k^{2}}=\frac{350 / 12}{100} \approx 0.292$

