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Weak Law of Large Numbers

• Consider I.I.D. random variables X1, X2, ...

 Xi have distribution F with E[Xi] = m and Var(Xi) = s2

 Let

 For any e > 0:

• Proof:

 By Chebyshev’s inequality:

0)(   nXP em

  m


n

n
XXX

EXE
...

21][   nn

n
XXX

X
2...

21Var)(Var
s




0)(
2

2

  n

n
XP

e

s
em





n

i

iX
n

X
1

1

Strong Law of Large Numbers

• Consider I.I.D. random variables X1, X2, ...

 Xi have distribution F with E[Xi] = m

 Let

 Strong Law  Weak Law, but not vice versa

 Strong Law implies that for any e > 0, there are only a 

finite number of values of n such that condition of 

Weak Law:                  holds. 
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Intuitions and Misconceptions of LLN

• Say we have repeated trials of an experiment

 Let event E = some outcome of experiment

 Let Xi = 1 if E occurs on trial i, 0 otherwise

 Strong Law of Large Numbers (Strong LLN) yields:

 Recall first week of class:

 Strong LLN justifies “frequency” notion of probability

 Misconceptions arising from LLN:

o Regression toward the mean (not related to LLN)

o Gambler’s fallacy: “I’m due for a win”

• Consider being “due for a win” with repeated coin flips...
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La Loi des Grands Nombres

• History of the Law of Large Numbers

 1713: Weak LLN described by Jacob Bernoulli

 1835: Poisson calls it “La Loi des Grands Nombres”

o That would be “Law of Large Numbers” in French

 1909: Émile Borel develops Strong LLN for       

Bernoulli random variables

 1928: Andrei Nikolaevich Kolmogorov proves        

Strong LLN in general case

 2009: Another year passes in which Charlie         

Sheen does not make use of LLN

o I’m still holding out hope for 2010...

And now a moment of silence...

...before we present...

...the greatest result of probability theory!

Silence!!

The Central Limit Theorem (CLT)

• Consider I.I.D. random variables X1, X2, ...

 Xi have distribution F with E[Xi] = m and Var(Xi) = s2

 More intuitively:

o Let

o Central Limit Theorem:

o Now let                , noting that Z ~ N(0, 1):
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No Limits for Central Limit Theorem

• History of the Central Limit Theorem

 1733: CLT for X ~ Ber(1/2) postulated by           

Abraham de Moivre

 1823: Pierre-Simon Laplace extends de Moivre’s    

work to approximating Bin(n, p) with Normal

 1901: Aleksandr Lyapunov provides precise                   

definition and rigorous proof of CLT

 2003: Charlie Sheen stars in television series         

“Two and Half Men”

o By end of current (7th) season, there will be 161 episodes

o Mean quality of subsamples of episodes is Normally 

distributed (thanks to the Central Limit Theorem)

Central Limit Theorem in Real World

• CLT is why many things in “real world” appear 

Normally distributed

 Many quantities are sum of independent variables

 Exams scores

o Sum of individual problems

 Election polling

o Ask 100 people if they will vote for candidate X (p1 = # “yes”/100)

o Repeat this process with different groups to get p1, ... , pn

o Have a normal distribution over pi

o Can produce a “confidence interval”

• How likely is it that estimate for true p is correct

• We’ll do an example like that soon

This is Your Midterm on the CLT

• Start with 70 midterm scores: X1, X2, ..., X70

 E[Xi] = 89.6 and Var(Xi) = 648.2

 Created 14 disjoint samples of size n = 5

o Y1 = {X1, X2,…, X5}, Y2 = {X6, X7,…, X10}, Yi = {X5i-4, X5i-3,…, X5i}

 Prediction by CLT:
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Estimating Clock Running Time

• Have new algorithm to test for running time

 Mean (clock) running time: m = t sec.

 Variance of running time: s2 = 4 sec2.

 Run algorithm repeatedly (I.I.D. trials), measure time

o How many trials so estimated time = t  0.5 with 95% certainty?

o Xi = running time of i-th run (for 1  i  n)

o By Central Limit Theorem, Z ~ N(0, 1), where:

o Solve for n*: 
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Estimating Time With Chebyshev

• Have new algorithm to test for running time

 Mean (clock) running time: m = t sec.

 Variance of running time: s2 = 4 sec2.

 Run algorithm repeatedly (I.I.D. trials), measure time

o How many trials so estimated time = t  0.5 with 95% certainty?

o Xi = running time of i-th run (for 1  i  n)

 What would Chebyshev say?

o Thanks for playing Pafnuty...
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Crashing Your Web Site

• Number visitors to web site/minute: X ~ Poi(100) 

 Server crashes if   120 requests/minute

 What is P(crash in next minute)?

 Exact solution:

 Use CLT, where Poi(100) ~ n Poi(100/n)   (all I.I.D)

o Note: Normal can be used to approximate Poisson

 I’ll give you one more chance (one-sided) Chebyshev:
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I need a volunteer

Sum of Dice

• You will roll 10 6-sided dice

 X = total value of all 10 dice

 Win if:  X  25  or  X  45

 Roll!

 And now the truth (according to the CLT):

 If only Chebyshev were right...
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