Viva La Correlacion!

- Say X and Y are arbitrary random variables

= Correlation of X and Y, denoted p(X, Y):
PX,Y) = Cov(X,Y)
A Var(X)Var(Y)
Note: -1 <p(X,Y)<1
Correlation measures linearity between X and Y
pX,¥Y)=1 = Y=aX+Db wherea=oc/o,
p(X,¥)=-1 = Y=aX+Db wherea=-c/o,
p(X,Y)=0 = absence of linear relationship
o But, X and Y can still be related in some other way!
If p(X, Y) =0, we say X and Y are “uncorrelated”
- Note: Independence implies uncorrelated, but not vice versa!

Fun with Indicator Variables

Let I, and I be indicators for events A and B
[1 if Aoccurs . 1 if Boccurs
Ta= 10 otherwise ° = {0 otherwise
* E[l=P(A), Ellg] =P(B), E[l\lg] = P(AB)
= Cov(ln 1) =E[lalg] — E[l,] Ellg]
=P(AB) — P(A)P(B)
=P(A|B)P(B) - P(A)P(B)
=PE)P(A|B) - P(A)]
= Cov(l,, Ig) determined by P(A | B) — P(A)
= P(A|B)>P(A) < p(la lg) >0
« P(A|B)=P(A) < p(l,lg)=0 (and Cov(l, Ig) = 0)
= P(A|B)<P(A) < p(lalg) <0

Can’t Get Enough of that Multinomial

- Multinomial distribution
= nindependent trials of experiment performed
= Each trials results in one of m outcomes, with ,,
respective probabilities: p,, p,, ..., p,, Where Zp, =1
« X; = number of trials with outcome i -

P(X1:C1,X2:C2,...,Xm:Cm):[ plcjpgz___p'c“m

cl,cz,...,ch

= E.g., Rolling 6-sided die multiple times and counting how
many of each value {1, 2, 3, 4, 5, 6} we get

= Would expect that X; are negatively correlated

» Let's see... when i #j, what is Cov(X;, X;)?

Covariance and the Multinomial

- Computing Cov(X;, X;)

= Indicator I;(k) = 1 if trial k has outcome i, O otherwise
E[L(K]=p, Xi =3 1,(k) X;=215(k)
k=1 k=1

. Cov(X,, X,)= 33 Cov(l,(b).1,(@))
a=1 b=1
= When a # b, trial a and b independent: Cov(l;(b),1;(a))=0
= When a = b: Cov(l;(b), I,(a)) = E[I;(a)1 ; ()] - E[I, (2)IE[I ; ()]
= Since trial a cannot have outcome i and j: E[I;(a)l;(a)]=0
Cov(X;, X;)= > Cov(l;(b), |,(a)):Z(—E[li(a)]E[lj(a)])

a=b=]

=>(=pP)=-Np,p; = X and X; negatively correlated
a=1

Multinomials All Around

+ Multinomial distributions:
= Count of strings hashed across buckets in hash table
= Number of server requests across machines in cluster
= Distribution of words/tokens in an email
= Etc.

- When m (# outcomes) is large, p; is small
= For equally likely outcomes: p; = 1/m

Cov(X;, X;)=—-np,p, =—%

+ Large m = X;and X very mildly negatively correlated
= Poisson paradigm still applicable

Conditional Expectation

- XandY are jointly discrete random variables
= Recall conditional PMF of X given Y =y:

Dy (X1 ¥) = P(X = x]Y = y) = P (0¥)
Py (Y)

- Define conditional expectation of X given Y =y:
EIX 1Y =y]=2 xP(X =x|Y =y) = Xpyy (X| ¥)
- Analogously, jointly continuous random variables:

o
b (1) = EIXTY = )= it (c]y) o




Rolling Dice

- Roll two 6-sided dice D, and D,
= X =value of D, + D, Y = value of D,
« Whatis E[X | Y = 6]?

E[X |Y =6]=> xP(X =x|Y =6)

:(%)(7+8+9+10+11+12) :%:9.5

= Intuitively makes sense: 6 + E[value of D;] =6 + 3.5

Hyper for the Hypergeometric

- Xand Y are independent random variables
= X~Bin(n,p) Y ~Bin(n, p)
= Whatis E[X | X +Y =m], where m <n?
= Start by computing P(X =k | X +Y =m):
X =k X+Y=m) P(X=kY=m-K) P(X=K)P(Y=m-k)

P(X:k|X+Y:m):P( = =
P(X+Y =m) P(X+Y =m) P(X+Y =m)

e e ()

G

= Hypergeometric: (X | X +Y =m) ~ HypG(m, 2n, n)
2 N

= E[X|X+Y=m]=nm/2n =m/2 # total tgtal X"

SUCCESSes trials trials

Properties of Conditional Expectation

. Xand are jointly distributed random variables

E[9()1Y =y1=2 9(X) pxy (X]y) or Tg(X)fx.Y(XI y) dx

- Expectation of conditional sum:

€| 3, 1v -y |- S, v -y

Expectations of Conditional Expectations

- Define g(Y) = E[X| Y]
= g(Y) is a random variable
= Forany Y=y, g(Y)=E[X]|Y=Yy]
o Thisis just function of Y, since we sum over all values of X
= Whatis E[E[X| Y]] = E[g(Y)]? (Consider discrete case)

E[ELX |YII= 2 EIX|Y = yIP(Y =)
:Zj:[zx‘,xp(x =x|Y =y)IP(Y =)
=D D AP(X =xY =y)=> x> P(X=x,Y =y)
:Zi:xXP(X =X) = E[X] (;amye for continuous)

Analyzing Recursive Code

int Recurse()

{
int x = randomInt(l, 3); // Equally likely values

if (x == 1) return 3;
else if (x == 2) return (5 + Recurse());
else return (7 + Recurse());

- LetY =value returned by rRecurse (). Whatis E[Y]?
E[Y]=E[Y | X =1JP(X =1)+E[Y | X =2]P(X =2)+E[Y | X =3]P(X =3)
E[Y|X=1]=3  E[Y|X=2]=5+E[Y] E[Y|X=3]=7+E[Y]
E[Y]=3(/3)+(B+E[Y])(1/3)+(7+EY])A/3) = 1/3)A5+2E[Y])
E[Y]=15

Random Number of Random Variables

- Say you have a web site: PimentoLoaf.com
= X = Number of people/day visit your site. X ~ N(50, 25)
= Y; = Number of minutes spent by visitor i. Y; ~ Poi(8)
= Xand all Y; are independent
X
= Time spent by all visitors/day: W = ZYi. What is E[W]?
i=1l
X X
EW]= E[ZY.}: EHZYi | Xﬂ = E[X -E[]]=E[X]ELY,]=50-8
i=1 i=1
X n n
E{ZY. I X =n}=ZE[Y. | X =n]=> E[Y,]=nE[Y]
i=1 i=1 i=1

E[iMX}XENJ




Conditional Variance

- Recall definition: Var(X) = E[(X — E[X])?]
« Define: Var(X | Y) = E[(X — E[X | Y])?| Y]
- Derived: Var(X) = E[X?] - (E[X])?
« Can derive: Var(X | Y) = E[X? | Y] = (E[X | Y])2
- After a bit more math (in the book):
= Var(X) = E[Var(X | Y)] + Var(E[X | Y])
= Intuitively, let Y = true temperature, X = thermostat value
= Variance in thermostat readings depends on:

o Average variance in thermostat at different temperatures +

- Variance in average thermostat value at different temperatures

Making Predictions

- We observe random variable X

Want to make prediction about Y
E.g., X = stock price at 9am, Y = stock price at 10am
Let g(X) be function we use to predict Y, i.e.: ¥ = g(X)
Choose g(X) to minimize E[(Y — g(X))?]
Best predictor: g(X) = E[Y | X]
Intuitively: E[(Y — c)?] is minimized when ¢ = E[Y]

o Now, you observe X, and Y depends on X, then use ¢ = E[Y | X]
You just got your first baby steps into Machine Learning

- We'll go into this more rigorously in a few weeks

Speaking of Babies...

- Say my height is X inches (x = 71)

= My son: He does not look like:

\ e
= Say, historically, sons grow to heights Y ~ N(X + 1, 4),
where X is height of father

o Y=(X+1)+C where C~N(0,4)
= What should | predict for the eventual height of my son?
« E[Y|X=71] =E[X+1+C|X=71]
=E[72+ C]=E[72] +E[C]=72+0
=72 inches




