Viva La Correlación!

- Say X and Y are arbitrary random variables

- Correlation of X and Y, denoted $\rho(X, Y)$:

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(\mathrm{X}) \operatorname{Var}(\mathrm{Y})}}
$$

- Note: $-1 \leq \rho(\mathrm{X}, \mathrm{Y}) \leq 1$
- Correlation measures linearity between X and Y
- $\rho(X, Y)=1 \Rightarrow Y=a X+b$ where $a=\sigma_{y} / \sigma_{x}$
- $\rho(X, Y)=-1 \Rightarrow Y=a X+b \quad$ where $a=-\sigma_{y} / \sigma_{x}$
- $\rho(\mathrm{X}, \mathrm{Y})=0 \Rightarrow$ absence of linear relationship - But, X and Y can still be related in some other way!
- If $\rho(X, Y)=0$, we say X and Y are "uncorrelated" - Note: Independence implies uncorrelated, but not vice versa!

Fun with Indicator Variables

- Let I_{A} and I_{B} be indicators for events A and B

$$
I_{A}=\left\{\begin{array}{ll}
1 & \text { if } A \text { occurs } \\
0 & \text { otherwise }
\end{array} \quad I_{B}= \begin{cases}1 & \text { if } B \text { occurs } \\
0 & \text { otherwise }\end{cases}\right.
$$

- $\mathrm{E}\left[I_{A}\right]=\mathrm{P}(\mathrm{A}), \quad \mathrm{E}\left[I_{B}\right]=\mathrm{P}(\mathrm{B}), \quad \mathrm{E}\left[I_{A} I_{B}\right]=\mathrm{P}(\mathrm{AB})$
- $\operatorname{Cov}\left(I_{A}, I_{B}\right)=\mathrm{E}\left[I_{A} I_{B}\right]-\mathrm{E}\left[I_{A}\right] \mathrm{E}\left[I_{B}\right]$
$=P(A B)-P(A) P(B)$
$=P(A \mid B) P(B)-P(A) P(B)$
$=P(B)[P(A \mid B)-P(A)]$
- $\operatorname{Cov}\left(I_{A}, I_{B}\right)$ determined by $\mathrm{P}(\mathrm{A} \mid \mathrm{B})-\mathrm{P}(\mathrm{A})$
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})>\mathrm{P}(\mathrm{A}) \Leftrightarrow \rho\left(I_{A}, I_{B}\right)>0$
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}) \Leftrightarrow \rho\left(I_{A}, I_{B}\right)=0 \quad$ (and $\operatorname{Cov}\left(I_{A}, I_{B}\right)=0$)
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})<\mathrm{P}(\mathrm{A}) \Leftrightarrow \rho\left(I_{A}, I_{B}\right)<0$

Can't Get Enough of that Multinomial

- Multinomial distribution
- n independent trials of experiment performed
- Each trials results in one of m outcomes, with respective probabilities: $p_{1}, p_{2}, \ldots, p_{m}$ where $\sum_{i=1}^{m} p_{i}=1$
- $X_{i}=$ number of trials with outcome i
$P\left(X_{1}=c_{1}, X_{2}=c_{2}, \ldots, X_{m}=c_{m}\right)=\binom{n}{c_{1}, c_{2}, \ldots, c_{m}} p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots p_{m}^{c_{m}}$
- E.g., Rolling 6 -sided die multiple times and counting how many of each value $\{1,2,3,4,5,6\}$ we get
- Would expect that X_{i} are negatively correlated
- Let's see... when $i \neq j$, what is $\operatorname{Cov}\left(X_{i}, X_{j}\right)$?

Covariance and the Multinomial

- Computing $\operatorname{Cov}\left(X_{i}, X_{j}\right)$
- Indicator $I_{i}(k)=1$ if trial k has outcome $i, 0$ otherwise

$$
E\left[I_{i}(k)\right]=p_{i} \quad X_{i}=\sum_{k=1}^{n} I_{i}(k) \quad X_{j}=\sum_{k=1}^{n} I_{j}(k)
$$

- $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\sum_{a=1}^{n} \sum_{b=1}^{n} \operatorname{Cov}\left(I_{i}(b), I_{j}(a)\right)$
- When $a \neq b$, trial a and b independent: $\operatorname{Cov}\left(I_{i}(b), I_{j}(a)\right)=0$
- When $a=b: \operatorname{Cov}\left(I_{i}(b), I_{j}(a)\right)=E\left[I_{i}(a) I_{j}(a)\right]-E\left[I_{i}(a)\right] E\left[I_{j}(a)\right]$
- Since trial a cannot have outcome i and $j: E\left[I_{i}(a) I_{j}(a)\right]=0$ $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\sum_{a=b=1}^{n} \operatorname{Cov}\left(I_{i}(b), I_{j}(a)\right)=\sum_{a=1}^{n}\left(-E\left[I_{i}(a)\right] E\left[I_{j}(a)\right]\right)$

$$
=\sum_{a=1}^{n=1}\left(-p_{i} p_{j}\right)=-n p_{i} p_{j} \quad \Rightarrow X_{i} \text { and } X_{j} \text { negatively correlated }
$$

Multinomials All Around

- Multinomial distributions:
- Count of strings hashed across buckets in hash table
- Number of server requests across machines in cluster
- Distribution of words/tokens in an email
- Etc.
- When m (\# outcomes) is large, p_{i} is small
- For equally likely outcomes: $p_{i}=1 / \mathrm{m}$

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}=-\frac{n}{m^{2}}
$$

- Large $m \Rightarrow X_{i}$ and X_{j} very mildly negatively correlated
- Poisson paradigm still applicable

Conditional Expectation

- X and Y are jointly discrete random variables
- Recall conditional PMF of X given $Y=y$:

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

- Define conditional expectation of X given $Y=y$:

$$
E[X \mid Y=y]=\sum_{x} x P(X=x \mid Y=y)=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- Analogously, jointly continuous random variables:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \quad E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
$$

Rolling Dice

- Roll two 6-sided dice D_{1} and D_{2}
- $X=$ value of $D_{1}+D_{2} \quad Y=$ value of D_{2}
- What is $E[X \mid Y=6]$?

$$
\begin{aligned}
E[X \mid Y=6] & =\sum_{x} x P(X=x \mid Y=6) \\
& =\left(\frac{1}{6}\right)(7+8+9+10+11+12)=\frac{57}{6}=9.5
\end{aligned}
$$

- Intuitively makes sense: $6+E\left[\right.$ value of $\left.D_{1}\right]=6+3.5$

Hyper for the Hypergeometric

- X and Y are independent random variables
- $X \sim \operatorname{Bin}(n, p) \quad Y \sim \operatorname{Bin}(n, p)$
- What is $E[X \mid X+Y=m]$, where $m \leq n$?
- Start by computing $\mathrm{P}(\mathrm{X}=\mathrm{k} \mid \mathrm{X}+\mathrm{Y}=\mathrm{m})$:
$P(X=k \mid X+Y=m)=\frac{P(X=k, X+Y=m)}{P(X+Y=m)}=\frac{P(X=k, Y=m-k)}{P(X+Y=m)}=\frac{P(X=k) P(Y=m-k)}{P(X+Y=m)}$

$$
=\frac{\left.\binom{n}{k} p^{k}(1-p)\right)^{n-k} \cdot\binom{n}{m-k} p^{m-k}(1-p)^{n-(m-k)}}{\binom{2 n}{m} p^{m}(1-p)^{2 n-m}}=\frac{\binom{n}{k} \cdot\binom{n}{m-k}}{\binom{2 n}{m}}
$$

- Hypergeometric: $(\mathrm{X} \mid \mathrm{X}+\mathrm{Y}=\mathrm{m}) \sim \operatorname{HypG}(m, 2 n, n)$
- $\mathrm{E}[\mathrm{X} \mid \mathrm{X}+\mathrm{Y}=\mathrm{m}]=n m / 2 n=m / 2 \quad$ \#total total "X" successes trials trials

Expectations of Conditional Expectations

- Define $g(Y)=E[X \mid Y]$
- $g(Y)$ is a random variable
- For any $\mathrm{Y}=\mathrm{y}, g(\mathrm{Y})=\mathrm{E}[\mathrm{X} \mid \mathrm{Y}=\mathrm{y}]$
- This is just function of Y, since we sum over all values of X
- What is $\mathrm{E}[\mathrm{E}[\mathrm{X} \mid \mathrm{Y}]]=\mathrm{E}[g(\mathrm{Y})]$? (Consider discrete case) $E[E[X \mid Y]]=\sum E[X \mid Y=y] P(Y=y)$

$$
\begin{aligned}
& =\sum_{y}\left[\sum_{x} x P(X=x \mid Y=y)\right] P(Y=y) \\
& =\sum_{y} \sum_{x} x P(X=x, Y=y)=\sum_{x} x \sum_{y} P(X=x, Y=y) \\
& =\sum_{x} x P(X=x)=E[X] \quad \text { (Same for continuous) }
\end{aligned}
$$

Analyzing Recursive Code

```
int Recurse()
{
    int x = randomInt(1, 3); // Equally likely values
    if (x == 1) return 3;
    else if (x == 2) return (5 + Recurse());
    else return (7 + Recurse());
}
- Let }\textrm{Y}=\mathrm{ value returned by Recurse(). What is E[Y]?
E[Y]=E[Y|X=1]P(X=1)+E[Y|X=2]P(X=2)+E[Y|X=3]P(X=3)
    E[Y|X=1]=3 E[Y|X=2]=5+E[Y] E[Y|X=3]=7+E[Y]
    E[Y]=3(1/3)+(5+E[Y])(1/3)+(7+E[Y])(1/3)=(1/3)(15+2E[Y])
        E[Y]=15
```


Random Number of Random Variables

- Say you have a web site: PimentoLoaf.com
- $X=$ Number of people/day visit your site. $X \sim N(50,25)$
- $Y_{i}=$ Number of minutes spent by visitor i. $Y_{i} \sim \operatorname{Poi}(8)$
- X and all Y_{i} are independent
- Time spent by all visitors/day: $W=\sum_{i=1}^{X} Y_{i}$. What is E[W]? $E[W]=E\left[\sum_{i=1}^{X} Y_{i}\right]=E\left[E\left[\sum_{i=1}^{X} Y_{i} \mid X\right]\right]=E\left[X \cdot E\left[Y_{i}\right]\right]=E[X] E\left[Y_{i}\right]=50 \cdot 8$
$E\left[\sum_{i=1}^{X} Y_{i} \mid X=n\right]=\sum_{i=1}^{n} E\left[Y_{i} \mid X=n\right]=\sum_{i=1}^{n} E\left[Y_{i}\right]=n E\left[Y_{i}\right]$
$E\left[\sum_{i=1}^{X} Y_{i} \mid X\right]=X \cdot E\left[Y_{i}\right]$

Conditional Variance

- Recall definition: $\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$
- Define: $\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]$
- Derived: $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
- Can derive: $\operatorname{Var}(X \mid Y)=E\left[X^{2} \mid Y\right]-(E[X \mid Y])^{2}$
- After a bit more math (in the book):
- $\operatorname{Var}(\mathrm{X})=\mathrm{E}[\operatorname{Var}(\mathrm{X} \mid \mathrm{Y})]+\operatorname{Var}(\mathrm{E}[\mathrm{X} \mid \mathrm{Y}])$
- Intuitively, let $Y=$ true temperature, $X=$ thermostat value
- Variance in thermostat readings depends on:
- Average variance in thermostat at different temperatures + - Variance in average thermostat value at different temperatures

Making Predictions

- We observe random variable X
- Want to make prediction about Y
- E.g., $X=$ stock price at 9am, $Y=$ stock price at 10am
- Let $g(X)$ be function we use to predict Y, i.e.: $\hat{Y}=g(X)$
- Choose $g(X)$ to minimize $\mathrm{E}\left[(\mathrm{Y}-g(X))^{2}\right]$
- Best predictor: $g(X)=E[Y \mid X]$
- Intuitively: $\mathrm{E}\left[(\mathrm{Y}-\mathrm{c})^{2}\right]$ is minimized when $\mathrm{c}=\mathrm{E}[\mathrm{Y}]$ - Now, you observe X, and Y depends on X, then use $c=E[Y \mid X]$
- You just got your first baby steps into Machine Learning - We'll go into this more rigorously in a few weeks

Speaking of Babies...

- Say my height is X inches $(x=71)$
- My son:

He does not look like:

- Say, historically, sons grow to heights $\mathrm{Y} \sim \mathrm{N}(X+1,4)$, where X is height of father

$$
\text { 。 } Y=(X+1)+C \quad \text { where } C \sim N(0,4)
$$

- What should I predict for the eventual height of my son?
- $\mathrm{E}[\mathrm{Y} \mid \mathrm{X}=71]=\mathrm{E}[\mathrm{X}+1+\mathrm{C} \mid \mathrm{X}=71]$ $=\mathrm{E}[72+\mathrm{C}]=\mathrm{E}[72]+\mathrm{E}[\mathrm{C}]=72+0$ = 72 inches

