

- $\rho(X, Y) = 0 \implies$ absence of <u>linear</u> relationship $_{\circ}$ But, X and Y can still be related in some other way!
- If $\rho(X, Y)$ = 0, we say X and Y are "uncorrelated" . Note: Independence implies uncorrelated, but <u>not</u> vice versa!

Fun with Indicator Variables

Can't Get Enough of that Multinomial Multinomial distribution n independent trials of experiment performed Each trials results in one of m outcomes, with mrespective probabilities: $p_1, p_2, ..., p_m$ where $\sum_{i=1}^{m} p_i = 1$ $X_i =$ number of trials with outcome i $P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = {n \choose c_1, c_2, ..., c_m} p_i^{c_1} p_2^{c_2} ... p_m^{c_m}$ E.g., Rolling 6-sided die multiple times and counting how many of each value {1, 2, 3, 4, 5, 6} we get Would expect that X_i are negatively correlated Let's see... when $i \neq j$, what is $Cov(X_i, X_j)$?

Multinomials All Around

- Multinomial distributions:
 - Count of strings hashed across buckets in hash table
 - Number of server requests across machines in cluster
 - Distribution of words/tokens in an email
 - Etc.
- When *m* (# outcomes) is large, *p_i* is small
 - For equally likely outcomes: $p_i = 1/m$

$$\operatorname{Cov}(X_i, X_j) = -np_i p_j = -\frac{n}{m^2}$$

- Large $m \Rightarrow X_i$ and X_j very mildly negatively correlated
- Poisson paradigm still applicable

Conditional Expectation

X and Y are jointly discrete random variables
 Recall conditional PMF of X given Y = y:

$$p_{X|Y}(x \mid y) = P(X = x \mid Y = y) = \frac{p_{X,Y}(x, y)}{p_Y(y)}$$

• Define conditional expectation of X given Y = y: $E[X | Y = y] = \sum x P(X = x | Y = y) = \sum x p_{X|Y}(x | y)$

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} \qquad E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) \, dx$$

Properties of Conditional Expectation

• X and Y are jointly distributed random variables $E[g(X)|Y = y] = \sum_{x \in Y} g(x) p_{x|y}(x|y) \text{ or } \int_{x}^{\infty} g(x) f_{x|y}(x|y) dx$

• Expectation of conditional sum:

$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i} \mid Y = y]$$

Expectations of Conditional Expectations
• Define
$$g(Y) = E[X | Y]$$

• $g(Y)$ is a random variable
• For any $Y = y$, $g(Y) = E[X | Y = y]$
• This is just function of Y, since we sum over all values of X
• What is $E[E[X | Y]] = E[g(Y)]$? (Consider discrete case)
 $E[E[X | Y]] = \sum_{y} E[X | Y = y]P(Y = y)$
 $= \sum_{y} \sum_{x} xP(X = x | Y = y)]P(Y = y)$
 $= \sum_{y} \sum_{x} xP(X = x, Y = y) = \sum_{x} x \sum_{y} P(X = x, Y = y)$
 $= \sum_{y} xP(X = x) = E[X]$ (Same for continuous)

Conditional Variance

- Recall definition: Var(X) = E[(X E[X])²]
 - Define: Var(X | Y) = E[(X E[X | Y])² | Y]
- Derived: Var(X) = E[X²] (E[X])²
 - Can derive: Var(X | Y) = E[X² | Y] (E[X | Y])²
- After a bit more math (in the book):
 - Var(X) = E[Var(X | Y)] + Var(E[X | Y])
 - Intuitively, let Y = true temperature, X = thermostat value
 - Variance in thermostat readings depends on:
 - $_{\circ}\;$ Average variance in thermostat at different temperatures +
 - $_{\circ}\;$ Variance in average thermostat value at different temperatures

Making Predictions

- We observe random variable X
 - · Want to make prediction about Y
 - E.g., X = stock price at 9am, Y = stock price at 10am
 - Let g(X) be function we use to predict Y, i.e.: $\hat{Y} = g(X)$
 - Choose g(X) to minimize $E[(Y g(X))^2]$
 - Best predictor: g(X) = E[Y | X]
 - Intuitively: E[(Y c)²] is minimized when c = E[Y]
 Now, you observe X, and Y depends on X, then use c = E[Y | X]
 - · You just got your first baby steps into Machine Learning
 - 。We'll go into this more rigorously in a few weeks

