

- Roll two 6-sided dice, yielding values D₁ and D₂
- Let E be event: $D_1 + D_2 = 4$
- What is P(E)?
 - |S| = 36, $E = \{(1, 3), (2, 2), (3, 1)\}$
 - P(E) = 3/36 = 1/12
- Let F be event: $D_1 = 2$
- P(E, given F already observed)?
 - $S = \{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)\}$
 - $E = \{(2, 2)\}$
 - P(E, given F already observed) = 1/6

General definition of Chain Rule:

 $P(E_1E_2E_3...E_n) = P(E_1)P(E_2 | E_1)P(E_3 | E_1E_2)...P(E_n | E_1E_2...E_{n-1})$

- Ross calls this the "multiplication rule"
- · You can call it either (just be consistent)

Sending Bit Strings

- Bit string with *m* 0's and *n* 1's sent on network
 - All distinct arrangements of bits equally likely
 - E = first bit received is a 1
 - F = k of first *r* bits received are 1's
- Solution 2:
 - Realize P(E | F) = P(picking one of k 1's out of r bits)
 - $P(E | F) = \frac{k}{r}$
 - Rock on!

Card Piles

- Deck of 52 cards randomly divided into 4 piles
 13 cards per pile
 - Compute P(each pile contains exactly one ace)
- Solution:
 - E₁ = {Ace Spades (AS) in any one pile}
 - E₂ = {AS and Ace Hearts (AH) in different piles}
 - E₃ = {AS, AH, Ace Diamonds (AD) in different piles}
 - E₄ = {All 4 aces in different piles}
 - Compute P(E₁ E₂ E₃ E₄)
 - $= P(E_1) P(E_2 | E_1) P(E_3 | E_1 E_2) P(E_4 | E_1 E_2 E_3)$

Thomas Bayes Rev. Thomas Bayes (1702 –1761) was a British mathematician and Presbyterian minister Image: State of the state of th

He looked remarkably similar to Charlie Sheen
But that's not important right now...

- Game show with 3 doors: A, B, and C
 - Behind one door is prize (equally likely to be any door)
 - Behind other two doors is nothing
 - · We choose a door
 - Then host opens 1 of other 2 doors, revealing nothing
 - We are given option to change to other door
- · Should we?
- Note: If we don't switch, P(win) = 1/3 (random)

