Balls, Urns, and the Supreme Court

- Supreme Court case: Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?

- Article by Erin Miller - Friday, January 22, 2010
- Thanks to Josh Falk for pointing out this article

Justice Breyer [Stanford Alum] opened the questioning by invoking the binomial theorem. He hypothesized a scenario involving "an urn with a thousand balls, and sixty are red, and nine hundred forty are black, and then you select them at random... twelve at a time." According to Justice Breyer and the binomial theorem, if the red balls were black jurors then "you would expect... something like a third to a half of juries would have at least one black person" on them.

- Justice Scalia's rejoinder: "We don't have any urns here."

Justice Breyer Meets CS109

- Should model this combinatorially
- Ball draws not independent trials (balls not replaced)
- Exact solution:

Exact solution:
$\mathrm{P}($ draw 12 black balls $)=\binom{940}{12} /\binom{1000}{12} \approx 0.4739$
$\mathrm{P}($ draw ≥ 1 red ball $)=1-\mathrm{P}($ draw 12 black balls $) \approx 0.5261$

- Approximation using Binomial distribution
- Assume P(red ball) constant for every draw $=60 / 1000$
- $X=\#$ red balls drawn. $X \sim \operatorname{Bin}(12,60 / 1000=0.06)$
- $P(X \geq 1)=1-P(X=0) \approx 1-0.4759=0.5240$

In Breyer's description, should actually expect just over half of juries to have at least one black person on them

From Discrete to Continuous

- So far, all random variables we saw were discrete
- Have finite or countably infinite values (e.g., integers)
- Usually, values are binary or represent a count
- Now it's time for continuous random variables
- Have (uncountably) infinite values (e.g., real numbers)
- Usually represent measurements (arbitrary precision) Height (centimeters), Weight (lbs.), Time (seconds), etc.
- Difference between how many and how much
- Generally, it means replace $\sum_{x=a}^{b} f(x)$ with $\int_{a}^{b} f(x) d x$

Continuous Random Variables

- X is a Continuous Random Variable if there is function $f(x) \geq 0$ for $-\infty \leq x \leq \infty$, such that:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

- f is a Probability Density Function (PDF) if:

$$
P(-\infty<X<\infty)=\int_{-\infty}^{\infty} f(x) d x=1
$$

Probability Density Functions

- Say f is a Probability Density Function (PDF)

$$
P(-\infty<X<\infty)=\int_{-\infty}^{\infty} f(x) d x=1
$$

- $f(x)$ is not a probability, it is probability/units of X
- Not meaningful without some subinterval over X

$$
P(X=a)=\int_{a}^{a} f(x) d x=0
$$

- Contrast with Probability Mass Function (PMF) in discrete case: $p(a)=P(X=a)$
where $\sum_{i=1}^{\infty} p\left(x_{i}\right)=1$ for X taking on values $x_{1}, x_{2}, x_{3}, \ldots$

Cumulative Distribution Functions

- For a continuous random variable X, the Cumulative Distribution Function (CDF) is:

$$
F(a)=P(X<a)=P(X \leq a)=\int_{-\infty}^{a} f(x) d x
$$

- Density f is derivative of CDF $F: f(a)=\frac{d}{d a} F(a)$
- For continuous f and small ε :

$$
P\left(a-\frac{\varepsilon}{2} \leq X \leq a+\frac{\varepsilon}{2}\right)=\int_{a-\varepsilon / 2}^{a+\varepsilon / 2} f(x) d x \approx \varepsilon f(a)
$$

Disk Crashes

- $\mathrm{X}=$ hours before your disk crashes

$$
f(x)=\left\{\begin{array}{cl}
\lambda e^{-x / 100} & x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- First, determine λ to have actual PDF - Good integral to know: $\int e^{u} d u=e^{u}$
$1=\int \lambda e^{-x / 100} d x=-100 \lambda \int \frac{-1}{100} e^{-x / 100} d x=-\left.100 \lambda e^{-x / 100}\right|_{0} ^{\infty 0}=100 \lambda \Rightarrow \lambda=\frac{1}{100}$
- What is $P(50<X<150)$?
$F(150)-F(50)=\int_{50}^{150} \frac{1}{100} e^{-x / 100} d x=-\left.e^{-x / 100}\right|_{50} ^{150}=-e^{-3 / 2}+e^{-1 / 2} \approx 0.383$
- What is $P(X<10)$?

$$
F(10)=\int_{0}^{10} \frac{1}{100} e^{-x / 100} d x=-\left.e^{-x / 100}\right|_{0} ^{10}=-e^{-1 / 10}+1 \approx 0.095
$$

Simple Example

- X is continuous random variable (CRV) with PDF:

$$
\begin{aligned}
& \int_{0}^{2} C\left(4 x-2 x^{2}\right) d x=\left.1 \Rightarrow C\left(2 x^{2}-\frac{2 x^{3}}{3}\right)\right|_{0} ^{2}=1 \\
& C\left(\left(8-\frac{16}{3}\right)-0\right)=1 \Rightarrow C \frac{8}{3}=1 \Rightarrow C=\frac{3}{8}
\end{aligned}
$$

- What is $P(X>1)$?
$\int_{1}^{\infty} f(x) d x=\int_{1}^{2} \frac{3}{8}\left(4 x-2 x^{2}\right) d x=\left.\frac{3}{8}\left(2 x^{2}-\frac{2 x^{3}}{3}\right)\right|_{1} ^{2}=\frac{3}{8}\left[\left(8-\frac{16}{3}\right)-\left(2-\frac{2}{3}\right)\right]=\frac{1}{2}$

Expectation and Variance

For discrete RV X :

$$
\text { For continuous RV } X \text { : }
$$

$$
\begin{aligned}
E[X] & =\sum_{x} x p(x) \\
E[g(X)] & =\sum_{x} g(x) p(x) \\
E\left[X^{n}\right] & =\sum_{x} x^{n} p(x)
\end{aligned}
$$

$$
\begin{gathered}
E[X]=\int_{-\infty}^{\infty} x f(x) d x \\
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x \\
E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f(x) d x
\end{gathered}
$$

For both discrete and continuous RVs:

$$
E[a X+b]=a E[X]+b
$$

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
$$

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Linearly Increasing Density

- X is a continuous random variable with PDF:

$$
\begin{aligned}
& \quad f(x)=\left\{\begin{array}{llr}
2 x & 0 \leq x \leq 1 & 1.5 \\
0 & \text { otherwise } & f(x) \\
0.5
\end{array}\right. \\
& \text { - What is } \mathrm{E}[\mathrm{X}] \text { ? }
\end{aligned}
$$

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} 2 x^{2} d x=\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=\frac{2}{3}
$$

- What is $\operatorname{Var}(\mathrm{X})$?

$$
\begin{aligned}
& E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} 2 x^{3} d x=\left.\frac{1}{2} x^{4}\right|_{0} ^{1}=\frac{1}{2} \\
& \operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{1}{2}-\left(\frac{2}{3}\right)^{2}=\frac{1}{18}
\end{aligned}
$$

Uniform Random Variable

- X is a Uniform Random Variable: X ~ Uni (α, β)
- Probability Density Function (PDF):

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{\beta-\alpha} & \alpha<x<\beta \\
0 & \text { otherwise }
\end{array}\right.
$$

- $P(a \leq x \leq b)=\int_{a}^{b} f(x) d x=\frac{b-a}{\beta-\alpha}$
- $E[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} \frac{x}{\beta-\alpha} d x=\frac{\beta^{2}-\alpha^{2}}{2(\beta-\alpha)}=\frac{\alpha+\beta}{2}$
- $\operatorname{Var}(X)=\frac{(\beta-\alpha)^{2}}{12}$

Fun with the Uniform Distribution

- $X \sim \operatorname{Uni}(0,20)$

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{20} & 0<x<20 \\
0 & \text { otherwise }
\end{array}\right.
$$

- $\mathrm{P}(\mathrm{X}<6)$?

$$
P(x<6)=\int_{0}^{6} \frac{1}{20} d x=\frac{6}{20}
$$

- $\mathrm{P}(4<\mathrm{X}<17)$?

$$
P(4<x<17)=\int_{4}^{17} \frac{1}{20} d x=\frac{17}{20}-\frac{4}{20}=\frac{13}{20}
$$

Riding the Marguerite Bus

- Say the Marguerite bus stops at the Gates bldg. at 15 minute intervals ($2: 00,2: 15,2: 30$, etc.)
- Passenger arrives at stop uniformly between 2-2:30pm
- X ~Uni(0,30)
- P (Passenger waits <5 minutes for bus)?
- Must arrive between 2:10-2:15pm or 2:25-2:30pm
$P(10<X<15)+P(25<x<30)=\int_{10}^{15} \frac{1}{30} d x+\int_{25}^{30} \frac{1}{30} d x=\frac{5}{30}+\frac{5}{30}=\frac{1}{3}$
- $\mathrm{P}($ Passenger waits >14 minutes for bus)?
- Must arrive between 2:00-2:01pm or 2:15-2:16pm $P(0<X<1)+P(15<x<16)=\int_{0}^{1} \frac{1}{30} d x+\int_{15}^{16} \frac{1}{30} d x=\frac{1}{30}+\frac{1}{30}=\frac{1}{15}$

When to Leave For Class

- Biking to a class on campus
- Leave t minutes before class starts
- $\mathrm{X}=$ travel time (minutes). $\quad \mathrm{X}$ has PDF: $f(x)$
- If early, incur cost: $\mathrm{c} / \mathrm{min}$. If late, incur cost: $\mathrm{k} / \mathrm{min}$.

$$
\text { Cost : } C(X, t)= \begin{cases}c(t-X) & \text { if } x<t \\ k(X-t) & \text { if } x \geq t\end{cases}
$$

- Choose t (when to leave) to minimize $\mathrm{E}[\mathrm{C}(X, t)]$: $E[C(X, t)]=\int_{0}^{\infty} C(X, t) f(x) d x=\int_{0}^{t} c(t-x) f(x) d x+\int_{t}^{\infty} k(x-t) f(x) d x$

Minimization via Differentiation

- What to minimize w.r.t. t :

$$
E[C(X, t)]=\int_{0}^{t} c(t-x) f(x) d x+\int_{t}^{\infty} k(x-t) f(x) d x
$$

- Differentiate $\mathrm{E}[\mathrm{C}(X, t)]$ w.r.t. t, and set $=0$ (to obtain t^{*}): - Leibniz integral rule:
$\frac{d}{d t} \int_{f_{1}(t)}^{f_{2}(t)} g(x, t) d x=\frac{d f_{2}(t)}{d t} g\left(f_{2}(t), t\right)-\frac{d f_{1}(t)}{d t} g\left(f_{1}(t), t\right)+\int_{f_{1}(t)}^{f_{2}(t)} \frac{\partial g(x, t)}{\partial t} d x$
$\frac{d}{d t} E[C(X, t)]=c(t-t) f(t)+\int_{0}^{t} c f(x) d x-k(t-t) f(t)-\int_{t}^{\infty} k f(x) d x$
$0=c F\left(t^{*}\right)-k\left[1-F\left(t^{*}\right)\right] \Rightarrow F\left(t^{*}\right)=\frac{k}{c+k}$

