Indicators: Now With Pair-wise Flavor!

- Recall I_{i} is indicator variable for event A_{i} when:

$$
I_{i}= \begin{cases}1 & \text { if } A_{i} \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

- Let $X=\#$ of events that occur: $X=\sum_{i=1}^{n} I_{i}$

$$
E[X]=E\left[\sum_{i=1}^{n} I_{i}\right]=\sum_{i=1}^{n} E\left[I_{i}\right]=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

- Now consider pair of events $A_{i} A_{j}$ occurring
- $I_{i} I_{j}=1$ if both events A_{i} and A_{j} occur, 0 otherwise
- Number of pairs of events that occur is $\binom{X}{2}=\sum_{i<j} I_{i} I_{j}$

Let's Try It With the Binomial

- $X \sim \operatorname{Bin}(n, p)$
- Each trial: $\mathrm{X}_{i} \sim \operatorname{Ber}(\mathrm{p}) \quad E\left[X_{i}\right]=p$
- Let event $\mathrm{A}_{i}=$ trial i is success (i.e., $\mathrm{X}_{i}=1$)
$E\left[\binom{x}{2}\right]=\sum_{i<j} E\left[X_{i} X_{j}\right]=\sum_{i<j} P\left(A_{i} A_{j}\right)=\sum_{i<j} p^{2}=\binom{n}{2} p^{2}$

$$
E[X(X-1)]=E\left[X^{2}\right]-E[X]=n(n-1) p^{2}
$$

$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\left(E\left[X^{2}\right]-E[X]\right)+E[X]-(E[X])^{2}$
$=n(n-1) p^{2}+n p-(n p)^{2}=n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2}$ $=n p(1-p)$

From Event Pairs to Variance

- Expected number of pairs of events:

$$
\begin{gathered}
E\left[\binom{X}{2}\right]=E\left[\sum_{i<j} I_{i} I_{j}\right]=\sum_{i<j} E\left[I_{i} I_{j}\right]=\sum_{i<j} P\left(A_{i} A_{j}\right) \\
E\left[\frac{X(X-1)}{2}\right]=\frac{1}{2}\left(E\left[X^{2}\right]-E[X]\right)=\sum_{i<j} P\left(A_{i} A_{j}\right) \\
E\left[X^{2}\right]-E[X]=2 \sum_{i<j} P\left(A_{i} A_{j}\right) \Rightarrow E\left[X^{2}\right]=2 \sum_{i<j} P\left(A_{i} A_{j}\right)+E[X]
\end{gathered}
$$

- Recall: $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$

$$
\begin{aligned}
\operatorname{Var}(X) & =2 \sum_{i<j} P\left(A_{i} A_{j}\right)+E[X]-(E[X])^{2} \\
& =2 \sum_{i<j} P\left(A_{i} A_{j}\right)+\sum_{i=1}^{n} P\left(A_{i}\right)-\left(\sum_{i=1}^{n} P\left(A_{i}\right)\right)^{2}
\end{aligned}
$$

Computer Cluster Utilization

- Computer cluster with N servers
- Requests independently go to server i with probability p_{i}
- Let event $A_{i}=$ server i receives no requests
- $X=\#$ of events $A_{1}, A_{2}, \ldots A_{n}$ that occur
- $Y=\#$ servers that receive ≥ 1 request $=N-X$
- $\mathrm{E}[\mathrm{Y}]$ after first n requests?
- Since requests independent: $P\left(A_{i}\right)=\left(1-p_{i}\right)^{n}$

$$
\begin{gathered}
E[X]=\sum_{i=1}^{N} P\left(A_{i}\right)=\sum_{i=1}^{N}\left(1-p_{i}\right)^{n} \\
E[Y]=N-E[X]=N-\sum_{i=1}^{N}\left(1-p_{i}\right)^{n} \\
\text { when } p_{i}=\frac{1}{N} \text { for } 1 \leq i \leq N, E[Y]=N-\sum_{i=1}^{N}\left(1-\frac{1}{N}\right)^{n}=N\left(1-\left(1-\frac{1}{N}\right)^{n}\right)
\end{gathered}
$$

Computer Cluster Utilization (cont.)

- Computer cluster with N servers
- Requests independently go to server i with probability p_{i}
- Let event $A_{i}=$ server i receives no requests
- $X=\#$ of events $A_{1}, A_{2}, \ldots A_{n}$ that occur
- $Y=\#$ servers that receive ≥ 1 request $=N-X$
- $\operatorname{Var}(\mathrm{Y})$ after first n requests? $\left(=(-1)^{2} \operatorname{Var}(\mathrm{X})=\operatorname{Var}(\mathrm{X})\right)$
- Independent requests: $P\left(A_{i} A_{j}\right)=\left(1-p_{i}-p_{j}\right)^{n}, \quad i \neq j$
$E[X(X-1)]=E\left[X^{2}\right]-E[X]=2 \sum_{i<j} P\left(A_{i} A_{j}\right)=2 \sum_{i<j}\left(1-p_{i}-p_{j}\right)^{n}$ $\operatorname{Var}(X)=2 \sum_{i<j}\left(1-p_{i}-p_{j}\right)^{n}+E[X]-(E[X])^{2} \quad E[X]=\sum_{i=1}^{N}\left(1-p_{i}\right)^{n}$
$=2 \sum_{i<j}\left(1-p_{i}-p_{j}\right)^{n}+\sum_{i=1}^{N}\left(1-p_{i}\right)^{n}-\left(\sum_{i=1}^{N}\left(1-p_{i}\right)^{n}\right)^{2}=\operatorname{Var}(Y)$

Computer Cluster $=$ Coupon Collecting

- Computer cluster with N servers
- Requests independently go to server i with probability p_{i}
- Let event $A_{i}=$ server i receives no requests
- $X=\#$ of events $A_{1}, A_{2}, \ldots A_{n}$ that occur
- $Y=\#$ servers that receive ≥ 1 request $=N-X$
- This is really another "Coupon Collector" problem
- Each server is a "coupon type"
- Request to server = collecting a coupon of that type
- Hash table version
- Each server is a bucket in table
- Request to server = string gets hashed to that bucket

Product of Expectations

- Let X and Y are independent random variables, and $g(\cdot)$ and $h(\bullet)$ are real-valued functions

$$
E[g(X) h(Y)]=E[g(X)] E[h(Y)]
$$

- Proof:

$$
\begin{aligned}
E[g(X) h(Y)] & =\int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x) h(y) f_{X, Y}(x, y) d x d y \\
& =\int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x) h(y) f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{x=-\infty}^{\infty} g(x) f_{X}(x) d x \cdot \int_{y=-\infty}^{\infty} h(y) f_{Y}(y) d y \\
& =E[g(X)] E[h(Y)]
\end{aligned}
$$

The Dance of the Covariance

- Say X and Y are arbitrary random variables
- Covariance of X and Y :

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]
$$

- Equivalently:
$\operatorname{Cov}(X, Y)=E[X Y-E[X] Y-X E[Y]+E[Y] E[X]]$

$$
=E[X Y]-E[X] E[Y]-E[X] E[Y]+E[X] E[Y]
$$

$$
=E[X Y]-E[X] E[Y]
$$

- X and Y independent, $E[X Y]=E[X] E[Y] \rightarrow \operatorname{Cov}(X, Y)=0$
- But $\operatorname{Cov}(X, Y)=0$ does not imply X and Y independent!

Dependence and Covariance

- X and Y are random variables with PMF:

X	-1	0	1	$p_{Y}(y)$
0	$1 / 3$	0	$1 / 3$	$2 / 3$
1	0	$1 / 3$	0	$1 / 3$
$p_{X}(x)$	$1 / 3$	$1 / 3$	$1 / 3$	1

$Y= \begin{cases}0 & \text { if } X \neq 0 \\ 1 & \text { otherwise }\end{cases}$

- $E[X]=0, E[Y]=1 / 3$
- Since $X Y=0, E[X Y]=0$
- $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0-0=0$
- But, X and Y are clearly dependent

Example of Covariance

- Consider rolling a 6-sided die
- Let indicator variable $X=1$ if roll is $1,2,3$, or 4
- Let indicator variable $Y=1$ if roll is $3,4,5$, or 6
- What is $\operatorname{Cov}(X, Y)$?
- $\mathrm{E}[\mathrm{X}]=2 / 3$ and $\mathrm{E}[\mathrm{Y}]=2 / 3$
- $\mathrm{E}[\mathrm{XY}]=\sum_{x} \sum_{v} x y p(x, y)$

$$
=(0 * 0)+(0 * 1 / 3)+(0 * 1 / 3)+(1 * 1 / 3)=1 / 3
$$

- $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=1 / 3-4 / 9=-1 / 9$
- Consider: $P(X=1)=2 / 3$ and $P(X=1 \mid Y=1)=1 / 2$

Observing $Y=1$ makes $X=1$ less likely

Another Example of Covariance

- Consider the following data:

Properties of Covariance

- Say X and Y are arbitrary random variables
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=E\left[X^{2}\right]-E[X] E[X]=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X+b, Y)=a \operatorname{Cov}(X, Y)$
- Covariance of sums of random variables
- $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are random variables
- $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$

Variance of Sum of Variables

$$
\cdot \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

- Proof:
$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}\right)$
$=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \quad$ Note: $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
$=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$
By symmetry:
$\operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{j}, X_{i}\right)$
$=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$
- If all X_{i} and X_{j} independent $(i \neq j): \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$

Variance of Sample Mean

- Consider n I.I.D. random variables $X_{1}, X_{2}, \ldots X_{n}$
- X_{i} have distribution F with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$
- We call sequence of X_{i} a sample from distribution F
- Recall sample mean: $\bar{X}=\sum_{i=1}^{n} \frac{X_{i}}{n}$ where $E[\bar{X}]=\mu$
- What is $\operatorname{Var}(\bar{X})$?

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Var}\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)=\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\left(\frac{1}{n}\right)^{2} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\left(\frac{1}{n}\right)^{2} \sum_{i=1}^{n} \sigma^{2}=\left(\frac{1}{n}\right)^{2} n \sigma^{2} \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

Sample Variance

- Consider n I.I.D. random variables $X_{1}, X_{2}, \ldots X_{n}$
- X_{i} have distribution F with $\mathrm{E}\left[\mathrm{X}_{i}\right]=\mu$ and $\operatorname{Var}\left(\mathrm{X}_{i}\right)=\sigma^{2}$
- We call sequence of X_{i} a sample from distribution F
- Recall sample mean: $\bar{X}=\sum_{i=1}^{n} \frac{X_{i}}{n} \quad$ where $E[\bar{X}]=\mu$
- Sample deviation: $\bar{X}-X_{i}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Sample variance: $S^{2}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{n-1}$
- What is $\mathrm{E}\left[S^{2}\right]$?
- $\mathrm{E}\left[S^{2}\right]=\sigma^{2}$
- We say S^{2} is "unbiased estimate" of σ^{2}

> Proof that $\mathrm{E}\left[S^{2}\right]=\sigma^{2} \quad$ (just for reference) $\begin{aligned} & E\left[S^{2}\right]=E\left[\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{n-1}\right] \Rightarrow(n-1) E\left[S^{2}\right]=E\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right] \\ &(n-1) E\left[S^{2}\right]= E\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]=E\left[\sum_{i=1}^{n}\left(\left(X_{i}-\mu\right)+(\mu-\bar{X})\right)^{2}\right] \\ &= E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{i=1}^{n}(\mu-\bar{X})^{2}+2 \sum_{i=1}^{n}\left(X_{i}-\mu\right)(\mu-\bar{X})\right] \\ &= E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+n(\mu-\bar{X})^{2}+2(\mu-\bar{X}) \sum_{i=1}^{n}\left(X_{i}-\mu\right)\right] \\ &= E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+n(\mu-\bar{X})^{2}+2(\mu-\bar{X}) n(\bar{X}-\mu)\right] \\ &= E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-n(\mu-\bar{X})^{2}\right]=\sum_{i=1}^{n} E\left[\left(X_{i}-\mu\right)^{2}\right]-n E\left[(\mu-\bar{X})^{2}\right] \\ &= n \sigma^{2}-n \operatorname{Var}(\bar{X})=n \sigma^{2}-n \frac{\sigma^{2}}{n}=n \sigma^{2}-\sigma^{2}=(n-1) \sigma^{2}\end{aligned}$

- So, $\mathrm{E}\left[S^{2}\right]=\sigma^{2}$

