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Inequality, Probability, and Joviality

• In many cases, we don’t know the true form of a 

probability distribution

 E.g., Midterm scores

 But, we know the mean

 May also have other measures/properties

o Variance

o Non-negativity

o Etc.

 Inequalities and bounds still allow us to say something 

about the probability distribution in such cases

o May be imprecise compared to knowing true distribution!

Markov’s Inequality

• Say X is a non-negative random variable

• Proof:

 I = 1 if X ≥ a, 0 otherwise



 Taking expectations:
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Andrey Andreyevich Markov

• Andrey Andreyevich Markov (1856-1922) was a 

Russian mathematician

 Markov’s Inequality is named after him

 He also invented Markov Chains…

o …which are the basis for Google’s PageRank algorithm

 His facial hair inspires fear in Charlie Sheen 

Markov and the Midterm

• Statistics from last quarter’s CS109 midterm

 X = midterm score

 Using sample mean X = 78.1  E[X]

 What is P(X ≥ 91)?

 Markov bound:  85.82% of class scored 91 or greater

 In fact, 34.44% of class scored 91 or greater

o Markov inequality can be a very loose bound

o But, it made no assumption at all about form of distribution!
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Chebyshev’s Inequality

• X is a random variable with E[X] = m, Var(X) = s2

• Proof:

 Since (X – m)2 is non-negative random variable, apply 

Markov’s Inequality with a = k2

 Note that:  (X – m)2 ≥ k2  |X – m| ≥ k,  yielding:
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Pafnuty Chebyshev 

• Pafnuty Lvovich Chebyshev (1821-1894) was also 

a Russian mathematician

 Chebyshev’s Inequality is named after him

o But actually formulated by his colleague Irénée-Jules Bienaymé

 He was Markov’s doctoral advisor

o And sometimes credited with first deriving Markov’s Inequality

 There is a crater on the moon named in his honor

http://upload.wikimedia.org/wikipedia/commons/7/70/AAMarkov.jpg
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Of the Midterm What Say You Chebyshev?

• Statistics from last quarter’s CS109 midterm

 X = midterm score

 Using sample mean X = 78.1  E[X]

 Using sample variance S2 = (24.5)2 = 600.25  s2

 What is P(| X – 78.1 | ≥ 30)?

 Chebyshev bound:  66.69% scored ≥ 108.1 or  48.1

 In fact, 21.85% of class scored ≥ 108.1 or  48.1

o Chebyshev’s inequality is really a theoretical tool
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One-Sided Chebyshev’s Inequality

• X is a random variable with E[X] = 0, Var(X) = s2

 Equivalently, when E[Y] = m and Var(Y) = s2:

 Follows directly by setting X = Y – E[Y], noting E[X] = 0
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Comments on Midterm, One-Sided One?

• Statistics from last quarter’s CS109 midterm

 X = midterm score

 Using sample mean X = 78.1  E[X]

 Using sample variance S2 = (24.5)2 = 600.25  s2

 What is P(X ≥ 103.1)?

 One-sided Chebyshev bound:  48.99% scored ≥ 103.1

 In fact, 13.26% of class scored ≥ 103.1

 Using Markov’s inequality: 
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Chernoff Bound

• Say we have MGF, M(t), for a random variable X

 Chernoff bounds:

 Bounds hold for t  0, so use t that minimizes e-taM(t)

• Proof:

 X has MGF: M(t) = E[etX]

 Note P(X ≥ a) = P(etX ≥ eta), use Markov’s inequality:

 Similarity for P(X  a) when t < 0
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Herman Chernoff

• Herman Chernoff (1923-) is an American 

mathematician and statistician

 Chernoff Bound is named after him

o And it actually was derived by him!

 He is Professor Emeritus of Applied Mathematics at 

MIT and of Statistics at Harvard University

o I do not know if he is a fan of Charlie Sheen

Chernoff’s Feeling (Unit) Normal

• Z is standard normal random variable: Z ~ N(0, 1)

 Moment generating function:

 Chernoff bounds for P(Z ≥ a)

 To minimize bound, minimize: t2/2 – ta

o Differentiate w.r.t. t, and set to 0:  t – a = 0   t = a

 Can proceed similarly for t = a < 0 to obtain:

 Compare to:
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Chernoff’s Poisson Pill

• X is Poisson random variable: X ~ Poi(l)

 Moment generating function:

 Chernoff bounds for P(X ≥ i)

 To minimize bound, minimize: l(et – 1) – it

o Differentiate w.r.t. t, and set to 0: let – i = 0   et = i/l

 Compare to:
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Jensen’s Inequality

• If f(x) is a convex function then E[f(x)] ≥ f(E[X])

 f(x) is convex if f’’(x) ≥ 0 for all x

 Intuition: Convex = “bowl”.    E.g.: f(x) = x2, f(x) = ex

 if g(x) = -f(x) is convex, then f(x) is concave

 Proof outline: Taylor series of f(x) about m.  Be happy.

 Note: E[f(x)] = f(E[X]) only holds when f(x) is a line 

o That is when: f’’(x) = 0 for all x

Johan Jensen

• Johan Ludwig William Valdemar Jensen (1859-

1925) was a Danish mathematician

 He derived Jensen’s inequality

 He was president of the Danish Mathematical Society 

from 1892 to 1903

 He has more names than Charlie Sheen

A Brief Digression on Utility Theory

• Utility U(x) is “value” you derive from x

 Can be monetary, but often includes intangibles

o E.g., quality of life, life expectancy, personal beliefs, etc.
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Utility Curves

• Utility curve determines your “risk preference”

 Can be different in different parts of the curve

 We’ll talk more about this near the end of the quarter

Utility

Dollars

Jensen’s Investment Advice

• Example: risk-taking investor, with two choices:

 Choice 1: Invest money to get return X where E[X] = m

 Choice 2: Invest money to get return m (probability 1)

• Want to maximize utility: u(R), where R is return

 if u(X) convex then E[u(X)] ≥ u(m), so choice 1 better

 If u(X) concave then E[u(X)]  u(m) so choice 2 better

 Convex u  “risk preferring”, concave u  “risk averse” 

http://upload.wikimedia.org/wikipedia/commons/0/04/Johan_Jensen.jpeg

