Inequality, Probability, and Joviality

- In many cases, we don't know the true form of a probability distribution
 - · E.g., Midterm scores
 - But, we know the mean
 - · May also have other measures/properties
 - 。 Variance
 - Non-negativity
 - 。Etc.
 - Inequalities and bounds still allow us to say something about the probability distribution in such cases
 - . May be imprecise compared to knowing true distribution!

Markov's Inequality

· Say X is a non-negative random variable

$$P(X \ge a) \le \frac{E[X]}{a}$$
, for all $a > 0$

Proof:

• Since $X \ge 0$, $I \le \frac{X}{a}$

aking expectations:

$$E[I] = P(X \ge a) \le E\left[\frac{X}{a}\right] = \frac{E[X]}{a}$$

Markov and the Midterm

- Statistics from last quarter's CS109 midterm
 - X = midterm score
 - Using sample mean \overline{X} = 78.1 \approx E[X]
 - What is P(X ≥ 91)?

$$P(X \ge 91) \le \frac{E[X]}{91} = \frac{78.1}{91} \approx 0.8582$$

- Markov bound: \leq 85.82% of class scored 91 or greater
- In fact, 34.44% of class scored 91 or greater
 - $_{\circ}~$ Markov inequality can be a very loose bound
 - o But, it made <u>no</u> assumption at all about form of distribution!

- And sometimes credited with first deriving Markov's Inequality
- There is a crater on the moon named in his honor

One-Sided Chebyshev's Inequality

• X is a random variable with E[X] = 0, Var(X) = σ^2 $P(X \ge a) \le \frac{\sigma^2}{\sigma^2 + a^2}$, for any a > 0

• Equivalently, when $E[Y] = \mu$ and $Var(Y) = \sigma^2$:

$$P(Y \ge E[Y] + a) \le \frac{\sigma}{\sigma^2 + a^2}, \text{ for any } a > 0$$
$$P(Y \le E[Y] - a) \le \frac{\sigma^2}{\sigma^2 + a^2}, \text{ for any } a > 0$$

Follows directly by setting X = Y – E[Y], noting E[X] = 0

Comments on Midterm, One-Sided One?

- · Statistics from last quarter's CS109 midterm
 - X = midterm score
 - Using sample mean $\overline{X} = 78.1 \approx E[X]$
 - Using sample variance S^2 = $(24.5)^2$ = $600.25\approx\sigma^2$
 - What is P(X ≥ 103.1)?

$$P(X \ge 78.1 + 25) \le \frac{600.25}{600.25 + (25)^2} \approx 0.4899$$

- One-sided Chebyshev bound: \leq 48.99% scored \geq 103.1
- In fact, 13.26% of class scored ≥ 103.1
- Using Markov's inequality: $P(X \ge 103.1) \le \frac{78.1}{103.1} \approx 0.7575$

