Inequality, Probability, and Joviality

- In many cases, we don't know the true form of a probability distribution
- E.g., Midterm scores
- But, we know the mean
- May also have other measures/properties
- Variance
- Non-negativity
- Etc.
- Inequalities and bounds still allow us to say something about the probability distribution in such cases
- May be imprecise compared to knowing true distribution!

Andrey Andreyevich Markov

- Andrey Andreyevich Markov (1856-1922) was a Russian mathematician

- Markov's Inequality is named after him
- He also invented Markov Chains..
- ...which are the basis for Google's PageRank algorithm
- His facial hair inspires fear in Charlie Sheen

Markov's Inequality

- Say X is a non-negative random variable

$$
P(X \geq a) \leq \frac{E[X]}{a}, \quad \text { for all } a>0
$$

- Proof:
- I = 1 if $X \geq a, 0$ otherwise
- Since $X \geq 0, \quad I \leq \frac{X}{a}$
- Taking expectations:

$$
E[I]=P(X \geq a) \leq E\left[\frac{X}{a}\right]=\frac{E[X]}{a}
$$

Markov and the Midterm

- Statistics from last quarter's CS109 midterm
- X = midterm score
- Using sample mean $\bar{X}=78.1 \approx E[X]$
- What is $P(X \geq 91)$?

$$
P(X \geq 91) \leq \frac{E[X]}{91}=\frac{78.1}{91} \approx 0.8582
$$

- Markov bound: $\leq 85.82 \%$ of class scored 91 or greater
- In fact, 34.44% of class scored 91 or greater
- Markov inequality can be a very loose bound
- But, it made no assumption at all about form of distribution!

Chebyshev's Inequality

- X is a random variable with $E[X]=\mu, \operatorname{Var}(X)=\sigma^{2}$

$$
P(|X-\mu| \geq k) \leq \frac{\sigma^{2}}{k^{2}}, \quad \text { for all } k>0
$$

- Proof:
- Since $(X-\mu)^{2}$ is non-negative random variable, apply Markov's Inequality with $a=k^{2}$

$$
P\left((X-\mu)^{2} \geq k^{2}\right) \leq \frac{E\left[(X-\mu)^{2}\right]}{k^{2}}=\frac{\sigma^{2}}{k^{2}}
$$

- Note that: $(X-\mu)^{2} \geq k^{2} \Leftrightarrow|X-\mu| \geq k$, yielding:

$$
P(|X-\mu| \geq k) \leq \frac{\sigma^{2}}{k^{2}}
$$

Pafnuty Chebyshev

- Pafnuty Lvovich Chebyshev (1821-1894) was also a Russian mathematician

- Chebyshev's Inequality is named after him
- But actually formulated by his colleague Irénée-Jules Bienaymé
- He was Markov's doctoral advisor

And sometimes credited with first deriving Markov's Inequality

- There is a crater on the moon named in his honor

Of the Midterm What Say You Chebyshev?

- Statistics from last quarter's CS109 midterm
- X = midterm score
- Using sample mean $\bar{X}=78.1 \approx E[X]$
- Using sample variance $S^{2}=(24.5)^{2}=600.25 \approx \sigma^{2}$
- What is $P(|X-78.1| \geq 30)$?

$$
P(|X-E[X]| \geq 30) \leq \frac{\sigma^{2}}{(30)^{2}}=\frac{600.25}{900} \approx 0.6669
$$

$$
P(|X-E[X]|<30)=1-P(|X-E[X]| \geq 30) \geq 1-0.6669=0.3331
$$

- Chebyshev bound: $\leq 66.69 \%$ scored ≥ 108.1 or ≤ 48.1
- In fact, 21.85% of class scored ≥ 108.1 or ≤ 48.1
- Chebyshev's inequality is really a theoretical tool

One-Sided Chebyshev's Inequality

- X is a random variable with $E[X]=0, \operatorname{Var}(X)=\sigma^{2}$

$$
P(X \geq a) \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}, \quad \text { for any } a>0
$$

- Equivalently, when $\mathrm{E}[\mathrm{Y}]=\mu$ and $\operatorname{Var}(\mathrm{Y})=\sigma^{2}$:

$$
\begin{aligned}
& P(Y \geq E[Y]+a) \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}, \quad \text { for any } a>0 \\
& P(Y \leq E[Y]-a) \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}, \quad \text { for any } a>0
\end{aligned}
$$

- Follows directly by setting $X=Y-E[Y]$, noting $E[X]=0$

Comments on Midterm, One-Sided One?

- Statistics from last quarter's CS109 midterm
- X = midterm score
- Using sample mean $\bar{X}=78.1 \approx E[X]$
- Using sample variance $S^{2}=(24.5)^{2}=600.25 \approx \sigma^{2}$
- What is $P(X \geq 103.1)$?

$$
P(X \geq 78.1+25) \leq \frac{600.25}{600.25+(25)^{2}} \approx 0.4899
$$

- One-sided Chebyshev bound: $\leq 48.99 \%$ scored ≥ 103.1
- In fact, 13.26% of class scored ≥ 103.1
- Using Markov's inequality: $P(X \geq 103.1) \leq \frac{78.1}{103.1} \approx 0.7575$

Chernoff Bound

- Say we have MGF, M(t), for a random variable X
- Chernoff bounds:

$$
\begin{array}{ll}
P(X \geq a) \leq e^{-t a} M(t), & \text { for all } t>0 \\
P(X \leq a) \leq e^{-t a} M(t), & \text { for all } t<0
\end{array}
$$

- Bounds hold for $t \neq 0$, so use t that minimizes $e^{-t a} \mathrm{M}(t)$
- Proof:
- X has MGF: $\mathrm{M}(t)=\mathrm{E}\left[\mathrm{e}^{t X}\right]$
- Note $P(X \geq a)=P\left(e^{t X} \geq e^{t a}\right)$, use Markov's inequality:
$P(X \geq a)=P\left(e^{t X} \geq e^{t a}\right) \leq \frac{E\left[e^{t X}\right]}{e^{t a}}=e^{-t a} E\left[e^{t X}\right]=e^{-t a} M(t)$, for all $t>0$
- Similarity for $\mathrm{P}(\mathrm{X} \leq \mathrm{a})$ when $t<0$

Herman Chernoff

- Herman Chernoff (1923-) is an American mathematician and statistician

- Chernoff Bound is named after him - And it actually was derived by him!
- He is Professor Emeritus of Applied Mathematics at MIT and of Statistics at Harvard University
- I do not know if he is a fan of Charlie Sheen

Chernoff's Feeling (Unit) Normal

- Z is standard normal random variable: $\mathrm{Z} \sim \mathrm{N}(0,1)$
- Moment generating function: $M_{Z}(t)=e^{t^{2} / 2}$
- Chernoff bounds for $P(Z \geq a)$
$P(Z \geq a) \leq e^{-t a} e^{t^{2} / 2}=e^{t^{2} / 2-t a}, \quad$ for all $t>0$
- To minimize bound, minimize: $t^{2} / 2-t a$

。Differentiate w.r.t. t, and set to 0: $t-a=0 \Rightarrow t=a$

$$
P(Z \geq a) \leq e^{-a^{2} / 2}, \quad \text { for all } \mathrm{t}=a>0
$$

- Can proceed similarly for $t=a<0$ to obtain:

$$
P(Z \leq a) \leq e^{-a^{2} / 2}, \quad \text { for all } t=a<0
$$

- Compare to: $P(Z>z)=1-P(Z \leq z)=1-\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-x^{2 / 2}} d x$

Chernoff's Poisson Pill

- X is Poisson random variable: $\mathrm{X} \sim \operatorname{Poi}(\lambda)$
- Moment generating function: $M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$
- Chernoff bounds for $\mathrm{P}(\mathrm{X} \geq 1)$

$$
P(X \geq i) \leq e^{\lambda\left(e^{t}-1\right)} e^{-i t}=e^{\lambda\left(e^{(}-1\right)-i t} \text {, for all } t>0
$$

- To minimize bound, minimize: $\lambda\left(e^{t}-1\right)$ - it
- Differentiate w.r.t. t, and set to $0: \lambda e^{t}-i=0 \Rightarrow e^{t}=i / \lambda$
$P(X \geq i) \leq e^{\lambda(i / \lambda-1)}\left(\frac{i}{\lambda}\right)^{-i}=e^{i} e^{-\lambda}\left(\frac{\lambda}{i}\right)^{i}=\left(\frac{e \lambda}{i}\right)^{i} e^{-\lambda}, \quad$ for all $i / \lambda>1$
- Compare to: $P(X=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}$

Johan Jensen

- Johan Ludwig William Valdemar Jensen (18591925) was a Danish mathematician

- He derived Jensen's inequality
- He was president of the Danish Mathematical Society from 1892 to 1903
- He has more names than Charlie Sheen

Jensen's Inequality

- If $f(x)$ is a convex function then $\mathrm{E}[f(x)] \geq f(\mathrm{E}[\mathrm{X}])$
- $f(x)$ is convex if $f^{\prime \prime}(x) \geq 0$ for all x
- Intuition: Convex = "bowl".

- if $g(x)=-f(x)$ is convex, then $f(x)$ is concave
- Proof outline: Taylor series of $f(x)$ about μ. Be happy.
- Note: $\mathrm{E}[f(x)]=f(\mathrm{E}[\mathrm{X}])$ only holds when $f(\mathrm{x})$ is a line。That is when: $f^{\prime \prime}(x)=0$ for all x

A Brief Digression on Utility Theory

- Utility $U(x)$ is "value" you derive from x

- Can be monetary, but often includes intangibles - E.g., quality of life, life expectancy, personal beliefs, etc.

Utility Curves

Dollars

- Utility curve determines your "risk preference"
- Can be different in different parts of the curve
- We'll talk more about this near the end of the quarter

Jensen's Investment Advice

- Example: risk-taking investor, with two choices:
- Choice 1: Invest money to get return \mathbf{X} where $E[X]=\mu$
- Choice 2: Invest money to get return μ (probability 1)
- Want to maximize utility: $u(\mathrm{R})$, where R is return
- if $u(\mathrm{X}) \underline{\text { convex }}$ then $\mathrm{E}[u(\mathrm{X})] \geq u(\mu)$, so choice 1 better
- If $u(\mathrm{X})$ concave then $\mathrm{E}[u(\mathrm{X})] \leq u(\mu)$ so choice 2 better
- Convex $u \Rightarrow$ "risk preferring", concave $u \Rightarrow$ "risk averse"

