## A Few Useful Formulas

- For any events $A$ and $B$ :

| $P(A B)$ | $=P(B A)$ |  | (Commutativity) |
| ---: | :--- | ---: | :--- |
| $P(A B)$ | $=P(A \mid B) P(B)$ |  | (Chain rule) |
|  | $=P(B \mid A) P(A)$ |  |  |
| $P\left(A B^{c}\right)$ | $=P(A)-P(A B)$ |  | (Intersection) |
| $P(A B)$ | $\geq P(A)+P(B)-1$ |  | (Bonferroni) |

## Generality of Conditional Probability

- For any events $A, B$, and $E$, you can condition consistently on E , and these formulas still hold:

$$
\begin{aligned}
& P(A B \mid E)=P(B A \mid E) \\
& P(A B \mid E)=P(A \mid B E) P(B \mid E) \\
& P(A \mid B E)=\frac{P(B \mid A E) P(A \mid E)}{P(B \mid E)} \quad \text { (Bayes Thm.) }
\end{aligned}
$$

- Can think of $E$ as "everything you already know"
- Formally, $P(\bullet \mid E)$ satisfies 3 axioms of probability


## Dissecting Bayes Theorem

- Recall Bayes Theorem (common form):

- Odds(H|E):

$$
\frac{P(H \mid E)}{P\left(H^{c} \mid E\right)}=\frac{P(E \mid H) P(H)}{P\left(E \mid H^{c}\right) P\left(H^{c}\right)}
$$

- How odds of H change when evidence E observed
- Note that $P(E)$ cancels out in odds formulation
- This is a form of probabilistic inference


## It Always Comes Back to Dice

- Roll two 6-sided dice, yielding values $D_{1}$ and $D_{2}$
- Let $E$ be event: $D_{1}=1$
- Let $F$ be event: $D_{2}=1$
- What is $P(E), P(F)$, and $P(E F)$ ?
- $P(E)=1 / 6, P(F)=1 / 6, P(E F)=1 / 36$
- $P(E F)=P(E) P(F) \quad \rightarrow \quad E$ and $F$ independent
- Let $G$ be event: $D_{1}+D_{2}=5 \quad\{(1,4),(2,3),(3,2),(4,1)\}$
- What is $P(E), P(G)$, and $P(E G)$ ?
- $P(E)=1 / 6, P(G)=4 / 36=1 / 9, \quad P(E G)=1 / 36$
- $\mathrm{P}(\mathrm{EG}) \neq \mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{G}) \quad \rightarrow \quad \mathrm{E}$ and G dependent


## Independence

- Two events $E$ and $F$ are called independent if:

$$
P(E F)=P(E) P(F)
$$

Or, equivalently: $P(E \mid F)=P(E)$

- Otherwise, they are called dependent events
- Three events E, F, and G independent if:
$P(E F G)=P(E) P(F) P(G)$, and
$P(E F)=P(E) P(F)$, and
$P(E G)=P(E) P(G)$, and
$P(F G)=P(F) P(G)$


## Let's Do a Proof

- Given independent events $E$ and $F$, prove:

$$
P(E \mid F)=P\left(E \mid F^{c}\right)
$$

- Proof:

$$
\begin{aligned}
P\left(E F^{c}\right) \quad & =P(E)-P(E F) \\
& =P(E)-P(E) P(F) \\
& =P(E)[1-P(F)] \\
& =P(E) P\left(F^{c}\right)
\end{aligned}
$$

So, $E$ and $F^{c}$ independent, implying that:
$P\left(E \mid F^{c}\right)=P(E)=P(E \mid F)$

- Intuitively, if E and F are independent, knowing whether $F$ holds gives us no information about $E$


## Generalized Independence

- General definition of Independence:

Events $E_{1}, E_{2}, \ldots, E_{n}$ are independent if for every subset $\mathrm{E}_{1}, \mathrm{E}_{2^{\prime}}, \ldots, \mathrm{E}_{\mathrm{r}^{\prime}}($ where $r \leq n)$ it holds that:

$$
P\left(E_{1} E_{2} \cdot E_{3} \ldots E_{r^{\prime}}\right)=P\left(E_{1^{\prime}}\right) P\left(E_{2^{\prime}}\right) P\left(E_{3^{\prime}}\right) \ldots P\left(E_{r^{\prime}}\right)
$$

- Example: outcomes of $n$ separate flips of a coin are all independent of one another
- Each flip in this case is called a "trial" of the experiment


## Generating Random Bits

- A computer produces a series of random bits, with probability $p$ of producing a 1.
- Each bit generated is an independent trial
- $E=$ first $n$ bits are 1 's, followed by a 0
- What is $P(E)$ ?
- Solution
- P (first $\left.n 1^{\prime} \mathrm{s}\right)=\mathrm{P}\left(1^{\text {st }}\right.$ bit=1) $\mathrm{P}\left(2^{\text {nd }}\right.$ bit $\left.=1\right) \ldots \mathrm{P}\left(\mathrm{n}^{\text {th }}\right.$ bit $\left.=1\right)$ $=p^{n}$
- $\mathrm{P}(n+1$ bit $=0)=(1-p)$
- $\mathrm{P}(\mathrm{E})=\mathrm{P}($ first $n$ 1's $) \mathrm{P}(n+1$ bit $=0)=\mathrm{p}^{\mathrm{n}}(1-\mathrm{p})$


## Hash Tables

- $m$ strings are hashed (equally randomly) into a hash table with $n$ buckets
- Each string hashed is an independent trial
- $E=$ at least one string hashed to first bucket
- What is $P(E)$ ?
- Solution
- $\mathrm{F}_{i}=$ string $i$ not hashed into first bucket (where $1 \leq i \leq m$ )
- $\mathrm{P}\left(\mathrm{F}_{\mathrm{i}}\right)=1-1 / \mathrm{n}=(\mathrm{n}-1) / \mathrm{n}$ (for all $1 \leq i \leq m$ )
- Event $\left(F_{1} F_{2} \ldots F_{m}\right)=$ no strings hashed to first bucket
- $P(E)=1-P\left(F_{1} F_{2} \ldots F_{m}\right)=1-P\left(F_{1}\right) P\left(F_{2}\right) \ldots P\left(F_{m}\right)$ $=1-((n-1) / n)^{m}$
- Similar to $\geq 1$ of $m$ people having same birthday as you


## Two Dice

- Roll two 6-sided dice, yielding values $D_{1}$ and $D_{2}$
- Let $E$ be event: $D_{1}=1$
- Let $F$ be event: $D_{2}=6$
- Are E and F independent? Yes!
- Let $G$ be event: $D_{1}+D_{2}=7$
- Are $E$ and $G$ independent? Yes!
- $P(E)=1 / 6, \quad P(G)=1 / 6, \quad P(E G)=1 / 36 \quad[$ roll $(1,6)]$
- Are $F$ and $G$ independent? Yes!
- $P(F)=1 / 6, \quad P(G)=1 / 6, \quad P(F G)=1 / 36 \quad[$ roll $(1,6)]$
- Are $\mathrm{E}, \mathrm{F}$ and G independent? No!
- $P(E F G)=1 / 36 \neq 1 / 216=(1 / 6)(1 / 6)(1 / 6)$


## Coin Flips

- Say a coin comes up heads with probability $p$
- Each coin flip is an independent trial
- $P(n$ heads on $n$ coin flips $)=p^{n}$
- $P(n$ tails on $n$ coin flips $)=(1-p)^{n}$
- $\mathrm{P}($ first $k$ heads, then $n-k$ tails $)=p^{k}(1-p)^{n-k}$
- $\mathrm{P}($ exactly $k$ heads on $n$ coin flips $)=\binom{n}{k} p^{k}(1-p)^{n-k}$


## Yet More Hash Table Fun

- $m$ strings are hashed (unequally) into a hash table with $n$ buckets
- Each string hashed is an independent trial, with probability $\mathrm{p}_{i}$ of getting hashed to bucket $i$

- Solution
- $F_{i}=$ at least one string hashed into $i$-th bucket
- $P(E)=P\left(F_{1} \cup F_{2} \cup \ldots \cup F_{k}\right)=1-P\left(\left(F_{1} \cup F_{2} \cup \ldots \cup F_{k}\right)^{c}\right)$ $=1-P\left(F_{1}{ }^{c} F_{2}{ }^{c} \ldots F_{k}{ }^{c}\right) \quad$ (DeMorgan's Law)
- $P\left(F_{1}{ }^{c} F_{2}{ }^{c} \ldots F_{k}{ }^{c}\right)=P$ (no strings hashed to buckets 1 to $k$ )

$$
=\left(1-p_{1}-p_{2}-\ldots-p_{k}\right)^{m}
$$

- $P(E)=1-\left(1-p_{1}-p_{2}-\ldots-p_{k}\right)^{m}$


## No, Really, it's More Hash Table Fun

- $m$ strings are hashed (unequally) into a hash table with $n$ buckets
- Each string hashed is an independent trial, with probability $\mathrm{p}_{i}$ of getting hashed to bucket $i$
- $E=$ Each of buckets 1 to $k$ has $\geq 1$ string hashed to it
- Solution
- $F_{i}=$ at least one string hashed into $i$-th bucket
- $P(E)=P\left(F_{1} F_{2} \ldots F_{k}\right)=1-P\left(\left(F_{1} F_{2} \ldots F_{k}\right)^{C}\right)$

$$
\begin{aligned}
& =1-\mathrm{P}\left(\mathrm{~F}_{1}{ }^{\mathrm{c}} \cup \mathrm{~F}_{2}{ }^{\mathrm{c}} \cup \ldots \cup \mathrm{~F}_{k}{ }^{\mathrm{c}}\right) \quad \text { (DeMorgan's Law) } \\
& =1-P\left(\bigcup_{i=1}^{k} F_{i}^{c}\right)=1-\sum_{r=1}^{k}(-1)^{(r+1)} \sum_{i_{1}<\cdots<i_{r}} P\left(F_{i_{1}}{ }^{c} F_{i_{2}}{ }^{c} \ldots F_{i_{r}}{ }^{c}\right)
\end{aligned}
$$

where $P\left(F_{i_{1}}{ }^{c} F_{i_{2}}{ }^{c} \ldots F_{i_{r}}{ }^{c}\right)=\left(1-p_{i_{1}}-p_{i_{2}}-\ldots-p_{i_{r}}\right)^{m}$

## Reminder of Geometric Series

- Geometric series: $x^{0}+x^{1}+x^{2}+x^{3}+\ldots+x^{n}=\sum_{i=0}^{n} x^{i}$
- From your "Calculation Reference" handout:

$$
\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}
$$

- As $n \rightarrow \infty$, and $|x|<1$, then

$$
\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x} \rightarrow \frac{1}{1-x}
$$

## Sending Messages Through a Network

- Consider the following parallel network:

- $n$ independent routers, each with probability $p_{i}$ of functioning (where $1 \leq i \leq n$ )
- $E=$ functional path from $A$ to $B$ exists. What is $P(E)$ ?
- Solution:
- $P(E)=1-P($ all routers fail $)$

$$
\begin{aligned}
& =1-\left(1-p_{1}\right)\left(1-p_{2}\right) \ldots\left(1-p_{n}\right) \\
& =1-\prod_{i=1}^{n}\left(1-p_{i}\right)
\end{aligned}
$$

## Simplified Craps

- Two 6-sided dice repeatedly rolled (roll = ind. trial)
- $E=5$ is rolled before a 7 is rolled
- What is $P(E)$ ?
- Solution
- $\mathrm{F}_{n}=$ no 5 or 7 rolled in first $\mathrm{n}-1$ trials, 5 rolled on $\mathrm{n}^{\text {th }}$ trial
- $\mathrm{P}(\mathrm{E})=P\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\sum_{n=1}^{\infty} P\left(F_{n}\right)$
- $P(5$ on any trial $)=4 / 36 \quad P(7$ on any trial $)=6 / 36$
- $P\left(F_{n}\right)=(1-(10 / 36))^{n-1}(4 / 36)=(26 / 36)^{n-1}(4 / 36)$
- $\mathrm{P}(\mathrm{E})=\frac{4}{36} \sum_{n=1}^{\infty}\left(\frac{26}{36}\right)^{n-1}=\frac{4}{36} \sum_{n=0}^{\infty}\left(\frac{26}{36}\right)^{n}=\frac{4}{36} \frac{1}{\left(1-\frac{26}{36}\right)}=\frac{2}{5}$


## DNA Paternity Testing

- Child is born with $(\mathrm{A}, \mathrm{a})$ gene pair (event $\mathrm{B}_{\mathrm{A}, \mathrm{a}}$ )
- Mother has (A, A) gene pair
- Two possible fathers: $M_{1}:(a, a) \quad M_{2}:(a, A)$
- $\mathrm{P}\left(\mathrm{M}_{1}\right)=\mathrm{p} \quad \mathrm{P}\left(\mathrm{M}_{2}\right)=1-\mathrm{p}$
- What is $P\left(M_{1} \mid B_{A, a}\right)$ ?
- Solution
- $P\left(M_{l} \mid B_{A, a}\right)=P\left(M_{l} B_{A, a}\right) / P\left(B_{A, a}\right)$
$=\frac{P\left(B_{A, a} \mid M_{1}\right) P\left(M_{1}\right)}{P\left(B_{A, a} \mid M_{1}\right) P\left(M_{1}\right)+P\left(B_{A, a} \mid M_{2}\right) P\left(M_{2}\right)}$
$=\frac{1 \cdot p}{1 \cdot p+\frac{1}{2}(1-p)}=\frac{2 p}{1+p}>p \quad \begin{aligned} & \mathrm{M}_{1} \text { more likely to be father } \\ & \text { than he was before, since } \\ & \mathrm{P}\left(\mathrm{M}_{1} \mid \mathrm{B}_{\mathrm{A}, \mathrm{a}}\right)>\mathrm{P}\left(\mathrm{M}_{1}\right)\end{aligned}$

