A Few Useful Formulas		
For any events A and B:		
P(A B)	= P(B A)	(Commutativity)
P(A B)	= P(A B) P(B) = P(B A) P(A)	(Chain rule)
P(A B ^c)	= P(A) - P(AB)	(Intersection)
P(A B)	$\geq P(A) + P(B) - 1$	(Bonferroni)

Generalized Independence

General definition of Independence:
 Events E₁, E₂, ..., E_n are independent if for every subset E₁, E₂, ..., E_r (where r ≤ n) it holds that:

 $P(E_{1'}E_{2'}E_{3}...E_{r'}) = P(E_{1'})P(E_{2'})P(E_{3'})...P(E_{r'})$

- Example: outcomes of *n* separate flips of a coin are all independent of one another
 - Each flip in this case is called a "trial" of the experiment

Two Dice

- + Roll two 6-sided dice, yielding values D_1 and D_2
 - Let E be event: D₁ = 1
 - Let F be event: D₂ = 6
 - Are E and F independent? Yes!
- Let G be event: $D_1 + D_2 = 7$
 - Are E and G independent? Yes!
 - P(E) = 1/6, P(G) = 1/6, P(E G) = 1/36 [roll (1, 6)]
 - Are F and G independent? Yes!
 - P(F) = 1/6, P(G) = 1/6, P(F G) = 1/36 [roll (1, 6)]
 - Are E, F and G independent? No!
 - $P(EFG) = 1/36 \neq 1/216 = (1/6)(1/6)(1/6)$

Generating Random Bits

- A computer produces a series of random bits, with probability *p* of producing a 1.
 - · Each bit generated is an independent trial
 - E = first *n* bits are 1's, followed by a 0
 - What is P(E)?
- Solution
 - P(first n 1's) = P(1st bit=1) P(2nd bit=1) ... P(nth bit=1)
 - = pⁿ • P(*n*+1 bit=0) = (1 - p)
 - P(E) = P(first n 1's) P(n+1 bit=0) = pⁿ (1 p)

Coin Flips

- Say a coin comes up heads with probability p
 Each coin flip is an independent trial
- P(n heads on n coin flips) = pⁿ
- $P(n \text{ tails on } n \text{ coin flips}) = (1 p)^n$
- P(first k heads, then n k tails) = $p^{k}(1-p)^{n-k}$
- P(exactly *k* heads on *n* coin flips) = $\binom{n}{k} p^k (1-p)^{n-k}$

Hash Tables *m* strings are hashed (equally randomly) into a hash table with *n* buckets For string backets

- Each string hashed is an independent trial
- E = at least one string hashed to first bucket
- What is P(E)?
- Solution
 - $F_i = \text{string } i \text{ not } \text{hashed into first bucket } (where 1 \le i \le m)$
 - $P(F_i) = 1 1/n = (n 1)/n$ (for all $1 \le i \le m$)
 - Event $(F_1F_2...F_m)$ = no strings hashed to first bucket

$$P(E) = 1 - P(F_1F_2...F_m) = 1 - P(F_1)P(F_2)...P(F_m)$$

= 1 - ((n - 1)/n)^m

• Similar to \geq 1 of *m* people having same birthday as you

Sending Messages Through a Network • Consider the following parallel network: $\begin{array}{c} & & & \\ & & & \\ & & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p_1 & & \\ \hline p_2 & & \\ \hline p_1 & & \\ \hline p$

